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ABSTRACT
We develop the theory of the forcing with trees and creatures for an
inaccessible A continuing Roslanowski and Shelah [15], [17]. To make a
real use of these forcing notions (that is to iterate them without collapsing
cardinals) we need suitable iteration theorems, and those are proved as
well. (In this aspect we continue Rostanowski and Shelah [16] and Shelah
[20], [21].)
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0. Introduction

The present paper has two themes.

The first is related to the quest for the right generalization of properness to
higher cardinals (that is, for a property of forcing notions that would play in
iterations with uncountable supports similar role to that of standard properness
in CS iterations). The evidence that there is no straightforward generalization
of properness to larger cardinals was given already in Shelah [18] (see [19, Ap-
pendix 3.6(2)]). Substantial progress has been achieved in Shelah [20], [21], but
the properties there were tailored for generalizing the case no new reals of [19,
Ch. V]. Then Rostanowski and Shelah [16] gave an iterable condition for not
collapsing AT in A-support iterations of (<\)-complete forcing notions (with
possibly adding subsets of A) and later Eisworth [6] gave another property pre-
served in A-support iterations (and implying that A* is not collapsed). At the
moment it is not clear if the two properties (the one of [16] and that of [6])
are equivalent, though they have similar flavour. However, the existing iterable
properties still do not cover many examples of natural forcing notions, specially
those which come naturally in the context of A-reals. This brings us to the
second theme: developing the forcing for A-reals.

A number of cardinal characteristics related to the Baire space “w, the Cantor

“ can be extended to the

space “2 and/or the combinatorial structure of |w]
spaces *X,*2 and [\]* for any infinite cardinal \. Following the tradition of Set
Theory of the Reals we may call cardinal numbers defined this way for *\ (and
related spaces) cardinal characteristics of A-reals. The menagerie of those
characteristics seems to be much larger than the one for the continuum. But to
decide if the various definitions lead to different (and interesting) cardinals we
need a well developed forcing technology.

There has been a serious interest in cardinal characteristics of the A-reals
in literature. For example, Cummings and Shelah [5] investigated the natural
generalizations by, 0, of the unbounded number and the dominating number,
respectively, giving simple constraints on the triple of cardinals (by,0y,2") and
proving that any triple of cardinals obeying these constraints can be realized.
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In a somewhat parallel work [22], Shelah and Spasojevi¢ studied by and the
generalization ty of the tower number. Zapletal [23] investigated the splitting
number s, — here the situation is really complicated as the inequality sy > AT
needs large cardinals. One of the sources of interest in characteristics of the
A-reals is their relevance for our understanding of the club filter on A (or the
dual ideal of non-stationary subsets of ) — see, e.g., Balcar and Simon [2,
§5], Landver [10], Matet and Pawlikowski [11], Matet, Rostanowski and Shelah
[12]. First steps toward developing forcing for A-reals have been done long time
ago: in 1980 Kanamori [9] presented a systematic treatment of the A-perfect—set
forcing in products and iterations. Brown [3], [4] discussed the A-superperfect
forcing and other tree-like forcing notions.

Our aim in this paper is to provide tools for building forcing notions rel-
evant for A-reals (continuing in this Rostanowski and Shelah [15], [17]) and
give suitable iteration theorems (thus continuing Rostanowski and Shelah [16]).
However, we restrict our attention to the case when A is a strongly inaccessible
uncountable cardinal (after all, Rg is inaccessible), see 0.3 below.

The structure of the paper is as follows. It is divided into two parts, first one
presents iteration theorems, the second one gives examples and applications. In
Section A.1 we present some basic notions and methods relevant for iterating A-
complete forcing notions. The next section, A.2, gives preservation of A-analogue
of the Sacks property (in Theorem A.2.4) as well as preservation of being *\-
bounding (in Theorem A.2.7). Section A.3 introduces fuzzy properness, a
more complicated variant of properness over semi-diamonds from [16]. Of
course, we prove a suitable iteration theorem (see Theorem A.3.10). Then we
give examples for the properties discussed in Part A. We start with showing
that a forcing notion useful for uniformization is fuzzy proper (in Section B.4),
and then we turn to developing forcing notions built with the use of trees
and creatures. In Section B.5 we set the terminology and notation, and in
the next section we discuss when the resulting forcing notions have the two
bounding properties discussed in §A.2. Section B.7 shows how our methods
result in fuzzy proper forcing notions, and the last section introduces some new
characteristics of the A-reals.
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Notation: Our notation is rather standard and compatible with that of clas-
sical textbooks (like Jech [8]). In forcing we keep the older convention that
a stronger condition is the larger one. Our main conventions are listed
below.

Notation 0.1:

(1) For a forcing notion P, I'p stands for the canonical P-name for the generic
filter in P. With this one exception, all P-names for objects in the ex-
tension via P will be denoted with a tilde below the letter (e.g., 7, X).
The weakest element of P will be denoted by (p (and we will always as-
sume that there is one, and that there is no other condition equivalent to
it). We will also assume that all forcing notions under considerations are
atomless.

By “A-support iterations” we mean iterations in which domains of con-
ditions are of size < A. However, we will pretend that conditions in a
A-support iteration Q = (PCa@C : ¢ < ¢*) are total functions on ¢* and
for p € lim(Q) and « € ¢* \ Dom(p) we will let p(a) = 0g, -

(2) For a filter D on A, the family of all D-positive subsets of \ is called Dt
(So Ae Dt if and only if AC XA and AN B # () for all B € D.)

The club filter of A is denoted by D,.

(3) Ordinal numbers will be denoted by the lower case initial letters of the
Greek alphabet («,3,7,9,...) and also by i,j (with possible sub- and
superscripts).

Cardinal numbers will be called 0, k, \, u (with possible sub- and super-
scripts); A is a fixed inaccessible cardinal (see 0.3).

(4) By x we will denote a sufficiently large regular cardinal; H(x) is the
family of all sets hereditarily of size less than x. Moreover, we fix a well
ordering <} of H(x).

(5) For regular cardinals A < \*, H<x(A*) is the collection of all sets & which
are hereditarily of size < X relatively to \*, i.e., such that | Tc™(z)] < A
and Tc(z) N Ord C A*. Recall that Tc®(z), the hereditary closure
relative to the ordinals, is defined by induction on rank(x) = v as follows:

e if v = 0 or x is an ordinal, then Tc™(z) = 0),
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e if v > 0 and x is not an ordinal, then
T (z) = | T (y) sy € 2} U,

(6) A bar above a letter denotes that the object considered is a sequence;
usually X will be (X; : i < (), where  is the length 1h(X) of X. Sometimes
our sequences will be indexed by a set of ordinals, say S C A, and then X
will typically be (X5 :0 € S).

But also, n,v and p (with possible sub- and superscripts) will denote
sequences (nodes in quasi trees).

For two sequences n,v we write v <I n whenever v is a proper initial
segment of 1, and v <7 when either v <npor v =1.

(7) We will consider several games of two players. One player will be called
Generic or Complete or just I player, and we will refer to this player
as “she”. Her opponent will be called Antigeneric or Incomplete or
just IT player and will be referred to as “he”.

Definition 0.2:

(1) A A-quasi tree is a set T of sequences of length <\ with the <-smallest
element denoted by root(T').

(2) A A-quasi tree T is a A-tree if it is closed under initial segments longer
then lh(root(T)).

(3) A A-quasi tree is complete if the union of any <-increasing sequence of
length less than A of members of T is in T'.

(4) For a A-quasi tree T and n € T we define the successors of n in T,
maximal points of T, the restriction of T to 7, and the height of
T by:

succr(n) ={veT : nav&-(FIpeT)(n<p<v)},
max(T) = {v € T : there is no p € T such that v < p},
T ={veT:n<Av}, and ht(T)=sup{lh(n):neT}.

We put 7' = T\ max(T).
(5) For § < A and a A-quasi tree T' we let

(T)s={neT:hn) =6 and (T)<s={neT:1h(n) <}
The set of all limit A-branches through T is

lim, (7)) def {n:nisa lsequence and (VB <) (Ja> B)(nlaecT)}.
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(6) A subset F' of a A-quasi tree T is a front of T if no two distinct members

of F' are <-comparable and
(Vn € limy(T) Umax(T))(Ba < A)(nla € F).

Note that if T" is a complete A-quasi tree of height < A, then max(T) is a front
of T" and every <-increasing sequence of members of T has a <-upper bound in
max(T).

In the present paper we assume the following.

CoNTEXT 0.3:
(a) A is a strongly inaccessible cardinal,
(b) A = (Ao : @ < \) is a strictly increasing sequence of uncountable regular
cardinals, sup, .y Ao = A,
(c) for each ar < A,

[T 2 <Xa and (V€ < Xa)(1€* < Aa)-
B<a

A. Tteration theorems for A-support iterations

A.1. ITERATIONS OF COMPLETE FORCING NOTIONS AND TREES OF CONDI-
TIONS. In this section we recall some basic definitions and facts concerning
complete forcing notions and A-support iterations.

Definition A.1.1: Let P be a forcing notion.
(1) For a condition 7 € P and a set S C A, let 0} (P, S,r) be the following
game of two players, Complete and Incomplete:

The game lasts at most A moves and during a play the players
construct a sequence ((p;, ¢;) : © < A) of pairs of conditions from
P in such a way that (Vj < i < A)(r < p; < g; < p;) and at the
stage ¢ < A\ of the game: if ¢ € S, then Complete chooses p; and
Incomplete chooses ¢;, and if ¢ ¢ S, then Incomplete chooses p;
and Complete chooses g;.

Complete wins if and only if for every ¢ < X\ there are legal moves for both
players.

(2) We say that the forcing notion P is (), S)-strategically complete if
Complete has a winning strategy in the game D()\(]P’, S,r) for each con-
dition r € P. We say that P is strategically (<\)-complete if it is
(X, 0)-strategically complete.
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(3) We say that P is (<\)-complete if every <p-increasing chain of length
less than A has an upper bound in P.

(4) Let N < (H(x),€,<%) be a model such that <*N C N, [N| = X and
P € N. We say that a condition p € P is (IV, P)-generic in the standard
sense (or just: (N,P)-generic) if for every P-name 7 € N for an ordinal
we have p - “7 € N”.

(5) P is A-proper in the standard sense (or just: A-proper) if there is
x € H(x) such that for every model N < (H(x), €, <}) satisfying

SANCN, |N|=X and P,z €N,

and every condition ¢ € N NP there is an (N, P)-generic condition p € P
stronger than q.

Remark A.1.2:

(1) Note that if P is strategically (A, A)-complete and D is a proper normal
filter on A, then in V¥ the normal filter on \ generated by D is also proper.
(Abusing notation, we may call this filter also by D.)

(2) On strategic completeness (and variants) see [20, §A.1]; below we recall
one result from there.

(3) As the referee pointed out, the idea of A.1.1(1) goes back to Foreman [7]
where the extreme cases S = (), A were considered.

PROPOSITION A.1.3 (See [20, Proposition A.1.2]): Suppose P is a forcing no-
tion, S C A.
(1) IfP is (<A)-complete, then it is (A, S)-strategically complete.
(2) If ' C S and P is (A, S7)-strategically complete, then it is (A, S)-strategi-
cally complete.
(3) IfQ is (A, S)-strategically complete, then the forcing with P does not add
new sequences of ordinals of length < A.

Thus the strategic (<\)-completeness implies (A, S)-strategic completeness
for any S C A. Also, (A, A)-strategic completeness is the weakest among those
properties.

PROPOSITION A.1.4: Suppose that P is a strategically (<\)-complete (atom-
less) forcing notion, a* < X and g, € P (for @ < o*). Then there are conditions
Pa € P (for a < a*) such that q, < p, and for distinct o, o/ < «* the conditions
Pa, Do’ are incompatible.

Proof: For a < a* let st, be the winning strategy of Complete in the game
0o (P, 0, q). By induction on i < a* we define conditions ¢, pl, as follows:
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p8 = qo, qg is the answer of Complete to (p8> according to sto, ¢ = p® = qa
for a > 0.

Suppose that conditions pJ, ¢/, have been defined for j < i, a < a* (where
i < a*) so that

(a) (Va < o <i)(¢2,q% are incompatible ),

(B) for each a < i, ((pl,q)) : @ < j < i) is a play of 0(P, 0, q,) in which

Complete uses the strategy st,, and

(V) Ph=¢} =g for a>i>j.
For a < i let 7, be a condition stronger than all ¢/, for j < i (there is one by
(B)). If every 7, (for v < i) is incompatible with ¢;, then we let p!, = r, for
a < i, pl, = qo for a > i. Otherwise, let ag < i be the first such that ro,,q
are compatible. Then we may pick two incompatible conditions pgo, p! above
both r,, and ¢;. Next we let p!, = r, for a < i, a # ap and p}, = g, for a > i.
Finally, for a < i, ¢!, is defined as the answer of Complete according to st to
((Phrdd) + 5 <) (ph), and ¢}, = qa for a > i.

After the inductive definition is carried out we may pick upper bounds p,
to (¢) : j < a*) (for @ < a*; exist by (8)). The conditions p, are pairwise
incompatible by («), so we are done. |

Both completeness and strategic completeness are preserved in iterations:

PROPOSITION A.1.5: Suppose that (P, Q. : a < (*) is a A-support iteration
such that for each a < ¢*

IFp,, “Qq is (<A)-complete.”
Then the forcing P¢« is (<\)-complete.

PROPOSITION A.1.6: Suppose Q = (P.,Q. : € < ) is a A-support iteration
and for each e <

IFp. “Q. is strategically (<\)-complete”.

Then:
(a) P, is strategically (<\)-complete.
(b) Moreover, for each ¢ < and r € P, there is a winning strategy st(e,r) of
Complete in the game 0} (Pe,(),r) such that, whenever ey < g1 < 7 and
r € P.,, we have:
(i) if ((pi,q;) = i < A) is a play of O} (Pe,,0,7]e0) in which Complete
follows the strategy st(eg,7[e0),
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then {(p;"rl[z0,€1), ¢ " r[[€0,€1)) : @ < ) is a play of O} (P.,,0,7)
in which Complete uses st(e1,7);

(ii) if ((pi,q;) 1 i < A) is a play of O3 (P,,(,7) in which Complete plays
according to the strategy st(ey,r),
then {((pileo,qileo) : i < A) is a play of O} (Pe,,0,7|e0) in which
Complete uses st(zso, r);

(iii) if ((pi, qi) : 7 < i*) is a partial play of O} (P., , 0, ) in which Complete
uses st(e1,r) and p' € P, is stronger than all p;leq (for i < i*),
then there is p* € P, such that p’ = p*[eg and p* > p; for i < i*.

Proof: Let r € P,. For each ¢ < 7y choose a P.-name st. for a function such
that in VFe:
e the domain Dom(st.) of st. consists of all sequences ((p;, ¢;) : © < @*) ™ (p;=)
such that i* <, p;,q; € Q. for 1 <%, j <7,
o if g=(pi,qi:i <i*)"(pi) € Dom(st.), then st.(g) € Q. is stronger than
DPix,
o if g=(pi,q:i<i*)"(pix) € Dom(ste) and pf = r(e), then st.(g) = r(e),
e st. is a winning strategy of Complete in DS(QE, 0,r(¢)) (when restricted
to relevant sequences).
Now, for g9 < 7y, we define a strategy st(eg, r[o) of Complete in 09 (Pe,, 0, o)
as follows. Let ((p;,q;) : i < i*)"(p;=) be a partial play of O} (Ps,, 0, r[e0),
1* < A. The answer ¢;+ given to Complete by st(eg,7[e0) is described by
e Dom(g;+) = Dom(p;~), and for each € € Dom(g;~):
e ifpi- () = r(¢), then gi- (¢) = r(¢), otherwise g;- (¢) is the <}-first P.-name
for a member of Q. such that

Fe. gi- (e) = ste({(pi(e), qi(€) : 4 <i") " (pi= (£))). W

Definition A.1.7 (Compare [20, A.3.3, A.3.2]):
(1) Let «,7y be ordinals, ) # w C v. A standard (w,a)?-tree is a pair
7T = (T,rk) such that:
o tk: T — wU{v},
o if t € T and rk(¢) = ¢, then ¢ is a sequence ((t)¢ : ( € wNe), where
each (t)¢ is a sequence of length «,
e (T,<) is a tree with root () and such that every chain in T has a
<-upper bound in 7.
We will keep the convention that 7.7 is (77, k).



118 A. ROSLANOWSKI AND S. SHELAH Isr. J. Math.

(2) Suppose that wy C wy; C v, ap < aq, and 7y = (T1,rky) is a standard
(w1, a1)7-tree. The projection projEZ;’zég(Tl) of 71 onto (wg, ap) is

defined as a standard (wg, ap)?-tree Ty = (T, rke) such that
To={{(t)clao: ¢ € woNrky(t)) : t = ((t)c : ¢ € w1 Nrky(t)) € Th}.
The mapping

T1 3 ((t)e : ¢ €wr Nrky(t)) — ((t)cTao : ¢ € wo N1k (8)) € T

(wi,a1)
J(wo,00)°

(3) We say that T = (7, : a < a*) is a legal sequence of v-trees if for

will also be denoted by pro

some increasing continuous sequence @ = {(wy : @ < a*) of subsets of ¥
we have

(i) 7, is a standard (wg, «)7-tree (for a < a*),

(i) if « < f < a*, then 7, = projgzz’i)) (75).

(4) Suppose that 7 = (T, : a < o*) is a légal sequence of ~-trees and o is
a limit ordinal. Let w, C 7 be such that 7, is a standard (w,,a)?-tree
(for a < @*) and let w = U, o Wo. The inverse limit li?n(’f) of 7 is
a standard (w, a*)V-tree (T, rk'"™) such that

(®) TH™ consists of all sequences t satisfying
(i) Dom(t) is an initial segment of w (not necessarily proper);
(ii) if ¢ € Dom(t), then ()¢ is a sequence of length a;
(ili) ((t)cla: ¢ € we NDom(t)) € T, for each o < .

(5) A legal sequence 7 = (7, : a < a*) is continuous if for each limit ordinal
B8 < a*, Ty = lim(T19).

(6) Let Q = (P;,Q; : i < ) be a A-support iteration. A standard tree of
conditions in Q is a system p = (pt : t € T) such that

e (T,rk) is a standard (w, a)7-tree for some w C v and an ordinal «,
o pr € Py for t €T, and
o if st €T, s <t, then ps = pi|rk(s).
(7) Let p°, p! be standard trees of conditions in Q, p* = (p! : t € T;), where
(wl’al)(Tl), wo Cwy €7, ag < ay. We will write p0 <wvar pl

Ty = proj(wo,ao) =wo, a0
(or just p° < p') whenever for each t € Ty, letting ¢/ = prO‘]Ei;Zi;(t) € Ty,

we have p¥ | rky (t) < p}.
Remark A.1.8: Concerning Definition A.1.7(4), note that T'™ satisfies the

requirements of A.1.7(1) (so lim* (7) is indeed a standard (w, a*)7-tree). Also,
if the sequence 7 is continuous (and T},’s are not empty), then T"™ = ().
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PROPOSITION A.1.9: Assume that Q = (P;, Q; @i <) is a A-support iteration
such that for all i < ~y we have

Fp, “Qy is strategically (<\)-complete”.

Suppose that p = (p; : t € T) is a standard tree of conditions in Q, |T| < A, and
T C P, is open dense. Then there is a standard tree of conditions§ = (g, : t € T')
such that p < g and (Vt € T)(tk(t) = v = ¢ € I).

Proof: For e <~ and r € P., let st(e,r) be a winning strategy of Complete in
0y (P, 0,7) as in A.1.6(b). Let

T e T (3 e Tt <)} = {te: ¢ < K}

(where k < X is a cardinal). We construct partial plays <(p§,qiC ) 1 i < k) of
DS(Prk(mC)’ 0,pi.) (for ¢ < k) in which Complete uses strategy st(rk(p;. ), p:,)
and such that

(o) if ¢ < x and rk(ps,) = 7, then pg €,

B) ift<gte, t<te, t €T, (<K, i<k,

then pf[rk(t) = pf[rk(t) and qf[rk(t) = qf I rk(t).

So suppose we have defined p]g,q]g for ( < Kk, j < i < k. First we look at
<(p§,q§) 1 j < i) — it is a play of D()\(]P’rk(pti),@,pti) in which Complete uses
st(rk(pe, ), pt; ), so we may find a condition p} € Prk(p,,) stronger than all p}, g
for j < i, and such that rk(p;,) = v = pl € Z. Next, for ( < &, { # i, we
define pf as follows: let t € T be such that ¢ < t¢, t < t; and rk(t) is the largest
possible, we declare that

Dom(p¢) = (Dom(pt) Nrk(t UDom ) UDom(p;, )

7<i

3

and pf[rk(t) = piIrk(t), and for € € [rk(t),v) we have that pf(s) is the <-first
P.-name for a member of Q. such that

pSle Ik, “pS () is an upper bound to {pe (e)} U {q]C(E) Dj <}
The definition of pg’s is correct by A.1.6(b)(iii+ii). Also, by the choice of “the
<} first” names and clause (B) at earlier stages we get clause (3) for pg’s
Fmally we define q (for ¢ < k) as the condition given to Complete by
st(rk(t¢), pe,) in answer to ((pj,qj) 1< z)"(pf) (Again, one easily verifies

(@), (8).)
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The conditions p$, ¢S are chosen in a similar manner except that we do not
have to worry about entering Z anymore, so we may take p® to be any bound to

¢ are defined as earlier.

the previously defined conditions p?, qiO , and other pg, q
After the above construction is carried out, for t € T' we let

q = ps| rk(t) for some (equivalently, all) ¢ < x such that ¢ < t..

It should be clear that § = (¢: : t € T') is as required. |

Let us close this section by recalling an important result on easy ensuring that
A-support iteration satisfies the A*+-cc. Its proof is a fairly straightforward
modification of the proof of the respective result for CS iterations; see [19,
Ch. III, Thm. 4.1}, Abraham [1, §2] for the CS case, Eisworth [6, §3] for the
general case of A-support iterations.

THEOREM A.1.10: Assume 2* = AT, A<} = X, Let Q = (P;,Q; : i < A*T) be
A-support iteration such that for all i < AT we have

e P, is \-proper,

o Ihp, 4Qi| < A",
Then the limit Py++ satisfies the AT -cc.

A.2. BOUNDING PROPERTIES. The results on preservation in CS iterations of
properties like the Sacks property and “w-bounding property were among the
earliest in the theory of proper forcing. Here we introduce relatives of these
two properties for A-reals and we show suitable iteration theorems. For both
properties, the properness is “built into the property”.

Recall that A\, X are assumed to be as specified in Context 0.3.

Definition A.2.1: Let P be a forcing notion.

(1) For a condition p € P and an ordinal ig < X\ we define a game D%a‘:ks(io,p, P)
of two players, Generic and Antigeneric. A play lasts at most A moves
indexed by ordinals from the interval [ig, A), and during it the players
construct a sequence {(s;, ¢, p') : ig < i < ) as follows. At stage i of the
play (where ig < i < M), first Generic chooses s; C Si+l) and a system
7' = (g}, :m € 5;N"T1X) such that

(a) s; is a complete A-tree of height ¢ + 1 and

(¥ € 5:)(3v € s:)(n Lv & () =i+ 1);

and lh(root(s;)) = 4o,
(B) for all j such that ig < j < we have s; = s; N <IF1\,
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() ¢ € P for all p € ;NN and
(6) ifig < j<i,ves;NITNand v <an e s; N then pl < g and
p <,
() |si NIl < A
Then Antigeneric answers choosing a system p' = <jvf7 :n € 5, NFLN) of
conditions in PP such that ¢, < pi for each n € s; N*T1A.
Generic wins a play if she always has legal moves (so the play lasts A
steps) and there are a condition ¢ > p and a P-name p such that
(®) qlkp “p € N& (Vi € [io, \))(pl(i + 1) € s:&q)y 14y € Tr)”.
(2) We say that P has the strong \-Sacks property ~Whenever
(a) P is strategically (< A)-complete, and
(b) Generic has a winning strategy in the game D/S\ad‘s(io, p,P) for any
ig < Aand p e P.

(3) We say that P has the A-Sacks property if for every p € P and a
P-name 7 such that p IF 7 : A — V|, there are a condition ¢ > p
and a sequence (a, : a < A) such that |an| < Ay (for @ < A) and
qglF “(Va < N (1(a) € an)”.

Remark A.2.2:

(1) At a stage i < A of a play of D/S\aCkS(iO,p,IP’), the Antigeneric player may
play stronger conditions, and using A.1.4 we may require that if p* = (p}, :
n € 8;NF1)) is his move, then the conditions p% are pairwise incompatible.
Thus the winning criterion (®) could be replaced by
(®) qlFp “(Vi € [io, ) (3n € si N T N)(g}, € Tp)”

(thus eliminating the use of p). However, the A-branch along which the condi-
tions are from the generic filter will be new (so we cannot replace the name p
by an object p € *\).

(2) Note that if Generic has a winning strategy in D/S\Mks((),p, P), then she
has one in DgaCks(iO,p,P) for all iy < A. (Remember: the sequence \ is
increasing.) The reason why we have ip as a parameter is a notational
convenience.

(3) Plainly, if Generic has a winning strategy in D;ad‘s(io,p, P), then she has
one with the following property:

(Mhice) if s;, @; are given to Generic as a move at a stage i € [ig, A), then for
every 1 € s; N\, the set {a < X\ : 9" () € s;} is an initial segment
of \; and n(j) = 0 for all j < ig.

Strategies satisfying the condition (Ky;c.) will be called nice.
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(4) Easily, if P has the strong A-Sacks property, then it has the A-Sacks prop-
erty.

Let us note that the demand A.2.1(2b) already implies a large amount of
completeness.

PRrROPOSITION A.2.3: If Generic has a winning strategy in the game
D%Mks(O,p, P), for anyp € P,
then P is (A, \)-strategically complete.

Proof: The main point is that the trees s; played by Generic are complete, so no
branches “die” at limit levels (see 0.2(3)). So when playing a game of O} (P, A, 7),
Complete may construct aside a play ((s;,¢*,p") : i < A) of 032%(0,r,P) and
decide her moves in O} (P, \,r) as follows. Let st be a winning strategy of
Generic in a§ack5(o, r, IP).

At the beginning of the game of 0y (P, \,r), Complete writes aside the first
move (sg, ") given by st and she picks a node 19 € so\{{)}. Then (in O} (P, A, 7))
she plays py = q,Om. If go is the answer of Incomplete to this move, Complete
writes aside pgo = qo, pg = qg for n € so \ {no, ()}, thus creating a move of
Antigeneric in D%Mks((), r, P).

Suppose that the players have arrived to a stage i < A of 03 (P, \,7) and

e they have played (p;,q; : j <), and
e Generic has written aside a partial play ((s;, ¢, p’) : j < i) of 95%(0, r, P)
in which st has been used, and
e Generic has chosen a <-increasing sequence (n; : j < i) of nodes n; €
s; N JHLN
Now Complete applies the strategy st to the play of E)/S\"‘Cks (0,7, P) she has written
aside, getting (s;,¢"). The tree s; is complete and it extends all the trees s; (for
J < 1), so there is a node n; € s; N T\ such that n; < n; (for j < i). Now, in
the play of O} (P, \,r) she puts p; = qfh,. If ¢; is the answer of Incomplete, she
writes aside a move of Antigeneric in 032%5(0, 7, P) as follows: Ph, = i, Pl = 4,
for n € s; NN\ {n;}.

Easily, the procedure described above gives a winning strategy of Complete

in 0y (P, A\, 7). |

THEOREM A.2.4: Suppose that Q = (P, Qo : @ < ) is a A-support iteration
such that for all o < y:

IFp, “Qa has the strong \-Sacks property”.
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Then:
(a) P, has the A-Sacks property.
(b) If N < (H(x),&,<}), IN| = A, )N C N and A\, \,p,Q,P,,... € N,
p € P, then there is an (N, P, )-generic condition r € P, stronger than p.

Proof: (a) First note that each P, is strategically (<\)-complete (by A.1.6;
remember A.2.1(2a)), so our assumptions on A, A hold in intermediate universes
VEa,

For a < v and 49 < A and a P,-name ¢ for a condition in Q., let st (io, )
be the <}-first P,-name for a nice (see A.2.2(3)) winning strategy of Generic
in the game D/S\"‘Cks(io,g, Qa)-

Let 7 be a P,-name for a function from A to V, p € P,. Pick a model
N < (H(x), €, <j) such that

M T, QP,,...€N, and |[N|=X and <*N CN.

Note that if 40 < A\, € NN, and ¢ € N is a Py-name for a member of Qq,
then st (io,q) € N. Also, as Q is a A-support iteration of (<\)-strategically
complete forcing notions, we may use A.1.6 inside N and for eache € NN(y+1)
and r € P. N N fix a winning strategy st*(e,7) € N of Complete in the game
0 (P, 0,7) so that conditions (i)—(iii) of A.1.6(b) hold.

Fix a list Z = (Z¢ : £ < A) of all open dense subsets of P, from N and
a bijection 7 : NNy — X (we may assume that v > A). For i < X let
w; = 7 i] (thus @ = (w; : i < )\) is an increasing continuous sequence of
subsets of N N+, each of size < A, and |J,., wi = N N~).

By induction on i < A we define sequences

(Ti:i<)) and (p',p.:i < \isnot a limit ordinal )

such that the following requirements are satisfied.

() (7; : i < ) is a continuous legal sequence of y-trees; 7; € N is a standard
(ws,3)7-tree, |Tiq1| < Ai, and (Vt € T;) (3 € T;)(t <t/ & rki(t') = ).

(B) Fori < Aandt € T; such that rk;(t) < v let ¥;(t) = {(8)r, ) : t < s € Ty}
Then (for each 4, as above) 0 # v;(t) C [[,_; A; and for each n € ¥;(?)
and ¢/ < 7(rk;(t)) we have n(i’) = 0.

(7) HEE NNy, w(€) <i<j<\teTy rk;(t) =¢and t' = proju’l (t) € T;
(sork;(t') = &), then ¢;(t') = {nli:n e Y;(®)}.

0) To = {0}, p° = ¥}), ) = p, and for i < A, p'' = P it € Tipy)
and pit! = (pi' 1t € Tiy1) are standard trees of conditions in Q, both
belonging to N and such that pit! < pit!,



124 A. ROSLANOWSKI AND S. SHELAH Isr. J. Math.

() If i < j < A, then p'*! Ziillfill JZans

(€) If tip1 € Tiy1 (for i < A) are such that rk;11(t;41) = v and t;41 =
pr OJZZLI 1]:11 (tj+1) (for i < j), then (pfﬂ}ﬂ,péjﬂl i < A) is a play of the
game 07 (P, 0, p) in which Complete uses the strategy st*(7, p).

(n) If t € Tiyq, tkip1(t) = 7, then pitt € Z¢ for all £ <4 and pitt forces a
value to ().

() Assume that £ € NNy, n(§) =49 < i and ¢ € T;11 is such that rk,; 1 (t) =
€. Let, for j <1, t; = proﬂ”j ZH( t) and let 1 be the <}-first P¢-name
for a member of Q¢ such that

IFp, “if there is a common upper bound to {p{j (&) : j <ip is non-limit},

then r is such an upper bound, else 1 = p(&)”.

Furthermore, for ig < j <iand n € ¥,41(tj4+1), fix st € T}41 such that
rkj1(s5Th) > € and (s3T)e = n, tj11 < st and put 1) = p];ill (&).
Then the condition pi*' forces in P, the following:
there is a partial play (s;,¢’,7 : o < j < i) of the game
Dsad‘s(zo 7,Q¢) in which the Generic player uses the strategy
sth(zo,N) and, for ig < j < 4,

sV TIN =01 (tje) and 7 = (1] 1 € 5;NITIN).

Concerning the choice of s/*" (and r7) in clause (f) above, note that (for
t,n,j as above):
if 5,7, 55 € Tjy1 are such that rkji 1 (s7) > €, (s7 ) =nandtji < sp
(for x € {*,+}), then pJ+1(§) = J+1(£) F1(¢), where s =

tir U{(&m} = sy 1§+ 1)=s AlE+1)

(remember p/ ! is a standard tree of conditions; see the last demand in A.1.7(6)).

Let us describe how the construction of (7; : i < A) and (P! : i < A) is
carried out. We start with letting Tp = {(}}, p% = p (as in (9)). Now suppose
that we have defined 7;,p’, pi. for j < i < A so that clauses («)—(6) are satisfied.
If 7 is a limit ordinal, then we let 7; = h?n((’fj 1 j <)) € N (p',p. are not
defined). It is straightforward to verify conditions (a)—(y) (use the inductive
hypothesis), clauses (§)—(6) are not relevant.

So suppose now that 4 is a successor ordinal, say i = ig + 1. First we let
T* be the largest standard (w;,7)7-tree such that projzz’ﬁio (T*) =T, if t =
((t)e : ¢ € wy Nrk™(¢)) € T*, then (t)¢(io) < Ny, if 7({) = o, then (t)¢]ip = 0.
(Plainly 7* € N and |T%*| < A.) Next, for each ¢ € T* we define a condition
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@ € Py(1y NN and names o () for ordinals (for £ € w; Nrk™(t)). For this let
us fix t € 7" and let ¢; = proj,,.";(t) € Tj for j <i. Put

Dom(q;) = (wi U U{Dom(p{j) :j < is not a limit }) Nrk*(¢),

and for ¢ € Dom(q;) let g;(¢) be a P¢-name for a member of Q¢ chosen as
follows. If ¢ € Dom(g;) \ w;, then g;(() is the <}-first Pc-name such that

IFp, “if possible, then ¢;(¢) is an upper bound to {p{j (¢) : j < i is non-limit}”.

If ¢ € Dom(g¢) Nw;, then a*(¢) € N is a Pc-name for an element of \; and ¢;(¢)
is the <} -first P¢c-name for a condition in Q¢ with the following property.
Let 1 be the <}-first Pc-name for a member of Q¢ such that

IFp, “if possible, then 7 is an upper bound to {p{j (¢) : j <m(¢) is non-limit},
else 7 = p(¢)".

Now, suppose that G¢ C P is a generic filter over V and pijfl I € G¢
for all j < 4o, and work in V[G¢]. Then, by clause (#), there is a par-
tial play (s;,¢’,7 : w(¢) < j < ip) of the game D%’\“ks(w((),rc,@?() in
which Generic uses st¢(m(¢),r)%, and s; NN = ;41 (¢j411¢) and 7 =
(rl :n € s; NI+LN), where rj = (pi]#l (€))% for )Tt € Tjy1 such that
tiv11¢ < sith (i) = n and 1k (s’t!) = 4. So we may look at the
answer s;,, ¢° = (¢ : v € s;, N TL)\) to this play according to the strat-
egy ste(m(¢),7)%. Then, ¢;(¢)% is a condition stronger than all rgtjﬂ)( for
m(¢) < j < ip, and such that

if (£)c € siy, then go(Q)% = g -

Also, ot (0)%¢ = {a < \i : (tig)e () € 54}

(If 7(¢) = o, then we do not have the partial play we started with — the game
just begins and we look at the first move of Generic, requiring that g;(¢)%¢ is
stronger than %< and if (t)¢ € s;, then ¢, (¢)% = qég)g.)

This finishes the definition of § = (g; : t € T*). One easily checks that g € N
is a tree of conditions (remember the choice of “the <}-first names”). Also, by
induction on ¢ € Dom(g;), one verifies that p’ §$]3 @ for all non-limit j < 4.
(Note that if 7(¢) = io, t € T*, and rk*(¢) > (, then in the inductive process
we know that by clause (¢)

q:[¢ IFp, “there is a common upper bound to {p{j () : 7 < m(¢) is non-limit}”
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and thus ¢ [¢ forces that the respective condition r is stronger than all p{j ©)
(for non-limit j < 7(¢)).)

Next, we use A.1.9 to pick a standard tree of conditions p* = (pf : t € T*) € N
such that ¢ < p* and for each ¢ € T* with rk*(¢) = v the condition p; decides
the values of all names ot (¢) for t € T*, ¢ € w; Nrk(t') and the value of 7(io)
(and let p; IF “7(ip) = 7.,”), and such that p; € Z¢ for all £ < 4y. For t € T*
with tk*(t) = v and for ¢ € w; let a*(¢) be the value forced to a!(¢) by p;.
Since a!(¢) is a Pc-name, we have that

ot €T & I‘k*(tl) =~7& (€ w;N I‘k*(to) = p:o I+ taU(C) =alt (C)
So we may naturally define () also for t € T* with rk(t) < . Now we let
T; = Tig+1 = {t € T : (V¢ € w; N1k (1)) ((t)¢ (do) < @’ ()}

and p!. , = p for t € T; (thus defining p%). Plainly, T; € N is a standard (w;, i)7-
tree satisfying (a)-(v), p& € N. Finally, using the properties of the strategies
st* stated in A.1.6(b) (and the clause ({) from earlier stages) we may pick a
standard tree of conditions p* = (pi : t € T;) such that p* < p' and

if teT;, rki(t)=7,t; = projﬁjﬁé (t) for non-limit j < 4,
then (piﬁjﬂ,p{j‘i : j < i) is a partial play of DS(PW,@,p) in which Complete

uses the winning strategy st*(vy, p).
Now one easily verifies that 7;, p*, p’. satisfy requirements («)—(6), thus the con-
struction is complete.

Let 7\ = h?n((’]} 17 < A)). We will consider this standard (N N+, A)7-tree in
universes VF¢ (for ¢ < ), so let us note that forcings P¢ may add new branches
in 7,. But if (in VF¢) ¢ € 7} and i < A, then

ti ()i ¢ € wy Nrka(1)) = projy A (t) € V.
Also if ¢ < X is limit, then the equality 7; = h?n((’fj : j < i)) holds in VF¢ as
well.

Let us stress it again, the tree 7, will be considered in the universes after
forcing extensions; each of the forcing notions does not add new branches (nodes)
to the trees 7; (for j < A) but adds new nodes to 7, (the forcings involved do
not add new sequences of ordinals of length < A, but they typically do add
A-sequences). Now, t|i (for t € 7y and ¢ < A) is the restriction of ¢ to level i;
the domain of ¢ is restricted to w; and the values, which are A-sequences, are
restricted to 7. In other words we take the projection of ¢ to the tree 7;. Thus,
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in (i), below, the index ¢*|(i + 1) is a node in the tree T;41! What may be
somewhat confusing here is that we have t, and t*— the former is a name for
a A-sequence, the latter is a sequence of such names. Thus t* may be (and
actually is) a name for a member of T and we may look at its projection on
T;+1 which is t*|(i + 1).

We are going to define a condition r € P, such that Dom(r) = N N~ and
the names r(«) are defined by induction on &« € NN~. For a € NN~y we
will also choose P,i-names t, for functions in *\, and we will put t* =
(tg : B < a& B € N). The construction will be carried out so that (for each
ae NN(y+1)):

(Do rlalkp, “t* e T\,

(il)o rlalFp, “(Vi< A)((pgjﬁm) o € Tp,)”.

Arriving at a limit stage « € N N (y + 1), we have defined rfa and %, and
we should only check that conditions (i)a, (ii)e hold (assuming (i)g, (ii)s hold
for 8 < a, B € N).

RE: (i)o: 7, is a standard tree, so every chain in Ty has a <-bound. Now the
first condition follows immediately from the inductive hypothesis.

RE: (ii)o: Suppose that G, C P, is generic over V and rla € G,. Let
i < Xand for B < alet t7 = (t°i)%"Ps € T;. Then, by (ii)s,
we know that p"|r1 [ € Go NPg (for each § € an N). But

ti1
p,’;fl B = p"|r1 15 (as tiﬂ+1 < t§1), so remembering that p"|r1 eN

we conclude p“r1 [a € Ggu.

Now suppose that we arrived at stage a+1 € NN (y+1) and we have defined
rla, t¢ so that (1)q+ (ii)e hold. Let G, C P, be generic over V, rla € G,.
For i < A let t& = (¢*|i)%> € T; (remember (i),). Plainly, e = pI‘OJw ZJ( ) for
j<i<A By (ii)a vvegetp”'1 la € G for all ¢ < A.

(B)a Let ip = m(a) and let 1 be the <}-first Py-name for an element of Q,
such that (r € V, of course, and)

g, “if there is a common upper bound to {pla () : j < i¢ is non-limit}
J

then r is such an upper bound, else r = p(a)”.

(Note: for each j* < A the sequence (¢ : j < j*) belongs to the ground model
V, and even to N.)

Fix j* < A, j* > 4o for a moment. In V, for each i € [ip,5*] and n €
Viy1(t2y1) let us choose sit! € Tipy such that ¢, < sitt, (sit!)o = 7. Now
work in V[G,]. Since p] h € G,, we may use clause (9) of the construction
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to claim that there is a partial play 7/ = (s;,@,7 : ig < i < j*) of the
game D/S\aCkS(io,fG“, (@a)Ga) in which Generic uses stq,(ig, 7¢*) and s; N1\ =
Vip1(t8,) and 7= ((p:fl ()G :m € s NITIN).

It should be clear that (in V[G,]) 7" < &7 for ig < j* < j** < A, so
we have a play ¢ = Ui0<j*<A 7" = (s;,@,7 :ig < i < A) of the game
D/S\ad‘s(io,raa, (QQ)G“) with the respective properties. This play is won by
Generic, so there are a condition g € (@u)Ga and a (@u)Ga—name p for a mem-
ber of *X such that ¢ > r% and
(®) |

qIF(gayoa “(Vi € [io, \)(pl(i + 1) € Yira () &p?ﬁﬂ)(@% € T(g,)ea)"
Let r(a), o be names for the g, p as above (i.e., () is a Py-name of a member
of Qu and {4 is a Py1-name of a member of A\ and r|a forces that they have
the property stated in (®)). It follows from our choices that (1)a41 + (ii)at1
hold, finishing the inductive construction of r € P, and t,’s.

For a < Alet ap = {7} : t € Tot1& tkay1(t) = v} (remember: 7! is the
value forced to 7(a) by p@™!). Plainly, |aq| < Ao for each a < \.

The proof of the iteration theorem will be complete once we show the following

CraM A.2.4.1: The condition r € P., (defined earlier) is stronger than p, it is
(N, P, )-generic and r IFp, “(Vo < X)(7(0) € aa)”.

Proof of the Claim: First, by induction on o« € NN (y+1) we are showing that
pla < rla. There is nothing to do at limit stages, so let us deal with non-limit
ones. Assume we have shown that pfa < rfa.

Suppose that G, C Py is generic over V, rla € Gq. Let t§ = (¢*])% € Ty,
and let ig,r be defined as in (H),. Since, by (ii)a, pi? la € G, (for non-limit
j <ip) and by the clause ({) of the construction, we get

V[Ga] = “there is a common upper bound to {pla ()% : j < ipis non-limit}”,
J

and thus
VI[Ga] E “(Vj < io)(pla ()% < rCe)n.

J+1
By the choice of r(a) we have 7(a)% > r% > p(a)

Hence rla Ik p(a) < r(a), as needed.

Now, let G C PP., be generic over V, r € G. Fori < A let t; = (t7|i)¢ € T;.
By (ii)y we know that pizfl € G. By clause (1) we have pizfl € Z; and (by the
definition of a;) pii&l IF 7 € a;. The former implies that GG intersects Z N N for
each open dense subset Z of P, from N, the latter gives 7¢(i) € a;. |



Vol. 159, 2007 SHEVA-SHEVA-SHEVA: LARGE CREATURES 129

(b) Included in the proof of (a). |

Definition A.2.5: Let P be a forcing notion.
(1) For a condition p € P and an ordinal iy < A we define a game 0% (io, p, P)
like D%Mks(io,p, P), but demand A.2.1(1(¢)) is replaced by
(e)™ |si NIl < A
(2) P has the strong A-bounding property if
(a) P is strategically (< A)-complete, and
(b) Generic has a winning strategy in the game 0% (ig, p,P) for every
o <A\, peP.
(3) P has the A-bounding property if for every p € P and a P-name 7 such
that p IF“ 7 — V7 there are a condition ¢ > p and a sequence (a, : @ < \)
such that |as| < A (for & < A) and ¢ IF“(Va < A)(7(a) € aq)”.

Remark A.2.6:
(1) All the remarks stated in A.2.2; A.2.3 have their (obvious) parallels for
the A-bounding properties.
(2) Clearly, (strong) \-Sacks property implies (strong, respectively) A-bound-
ing property.

THEOREM A.2.7: Suppose that Q = (Po, Qu : a0 < ) is a A-support iteration
such that for all o < A:

IFp, “Qa has the strong A-bounding property”.

Then:
(a) P., has the A\-bounding property.
(b) IfN < (H(x),€,<}), IN[ = A, AN C N and \,p,Q,P,,...€ N,pe P,
then there is an (N, P, )-generic condition r € P, stronger than p.

Proof: Basically the same as for A.2.4, just replacing each occurrence of \;
by A. |

The results of this section will be improved, simplified and generalized in [14].

A.3. Fuzzy PROPERNESS OVER A. A properness-type property preserved in
A-support iterations, so called properness over semi-diamonds, was intro-
duced in Rostanowski and Shelah [16]. That property worked for any uncount-
able regular cardinal \ satisfying A<* = X (not necessarily strongly inaccessible),
so because of the known ZFC limitations a number of natural forcing notions
were not covered. For the context considered in this paper we may do much
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better: fuzzy properness introduced in this section captures more examples.
Even though we do not prove a real preservation in A-support iterations, our
iteration theorem A.3.10 is satisfactory for most applications (see sections B.4
and B.8 later).

In this section we fix \*; A, W and D such that

CONTEXT A.3.1:
(1) A* > X is a regular cardinal, A C Hox(A\*) (see 0.1(5)), W C [A]*, and if
a€W,w € [a]<*, f:w — a, then f € a (hence also 0 € a for a € W),
(2) for every x € H(x) there is a model N < (H(x), €, <j) such that |[N| = A,
ANCN,zeNand NNAecW,
(3) D is a normal filter on A such that there is a D-diamond (see A.3.2).

Definition A.3.2:
(1) We say that F' = (Fs : 6 € S) is a D-pre-diamond sequence if
e S € DT contains all successor ordinals below A, A\ S is unbounded
in A 0¢.5, and
o F5:0 — Nforalld e S.
(2) A convenient D-diamond is a D-pre-diamond F = (F; : § € S) such
that
(Vfe*N({deS:FsC f}eD").

Definition A.3.3: Let IP be a forcing notion. A A\-base for P over W is a pair
(R,9Q) such that
(a) RCPx Ax Ais a relation such that

if (p,d,x) € R and p <pp’, then (p',d,z) € R,

() D = (V. : a € W) where, for each a € W, Yoz A — [a]<?,
(c) ifgeP,ae W, and § < A is a limit ordinal,
then there are p >p ¢ and = € 9,(d) such that (p,d, z) € R.
If R is understood and (p, d,z) € R, then we may say p obeys x at o.

Definition A.3.4: Let P be a forcing notion and let (9R,2)) be a A-base for P

over W. Also let a model N < (H(x), €, <}) be such that [N| = X, <*N C N,

o NnAew and {\,P,D,R} € N. Furthermore, let h: A — N be such

that the range Rng(h) of the function h includes PN N and let F = (Fs: § € S)
be a D-pre-diamond sequence.

(1) Let Z = (Z, : @ < A\) C N list all open dense subsets of P from N. A

sequence p = (py : a < ¢) of conditions from PN N of length § < A is
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(2)

called Z-exact if
(V€ < 8)(3a < 8)(pa € Te).

We say that F is a quasi D-diamond sequence for (N, h,P) if for some
(equivalently, all) list Z = (Z,, : a < A) of all open dense subsets of P from
N, for every <p-increasing sequence p = (p,, : @ < A) C PN N such that
P is Z-exact, or equivalently

g% {§ < X:{ps:a<6)is I-exact} € D,
we have

{€ ENS:(NVa<d)(hoFs(a)=ps)} € D".
For a limit ordinal § € S we define Y(5) = Y(N,P, h, F,R,9), ) as the set

{x € Da(0) : if (ho Fs(a) : a < §) is a <p-increasing sequence
of conditions from P,
then there is a condition p € P such that
(Va < §)(h o Fs(a) <p p) and (p, d, z) € R}

(Note: if € Y(0), then there is p € N witnessing this.)
Let Z = (Z, : @ < A\) C N list all open dense subsets of P from N. A
sequence § = (g5 : 0 € S limit &x € &Xs) C NNP is called a weak
fuzzy candidate over F for (N,h,P,R,9),T) whenever () # X5 C V(J)
(for limit 6 € S) and

() {0€8:(Vx € X5)(¢s,0 € Zo)} = Smod D for each o < A, and

(B) if 6 € S is a limit ordinal, z € X5, and (ho Fs(a) : a < 0) is a

<p-increasing Z-exact sequence of members of PN N,
then (Vo < 6)(ho Fs(a) <p ¢s5,2) and (gs5.4,9,x) € R.

If above X5 = Y(9) for each limit § € S, then g is called a fuzzy candi-
date over I for (N,h,P,R,9),T).

Omitting Z means “for some Z”.
Let § = (g5 : 0 € S limit & € Xs) be a weak fuzzy candidate over F for
(N,h,P,R,9),7), and r € P. We define a game Df\uzzy(r, N,Z,h,P,F,q) of
two players, the Generic player and the Antigeneric player, as follows.
A play lasts A moves, in the i*" move a condition r; € P and a set C; € D
are chosen such that (Vj < i)(r < r; < r;), and Generic chooses r;,C;
if i € S = Dom(F), and Antigeneric chooses r;,C; if i ¢ S. In the end
Generic wins the play if (there were always legal moves for both players
and)
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() (Va<AN)(Fi<NEFpePNN)(peZy&p<r), and
(B) if 6 € SN(,.5Ci is a limit ordinal, (ho Fs(a) : a < 0) is a <p-
increasing Z-exact sequence and (Vo < 6)(3i < 8)(h o Fs(a) < 7y),
then for some = € X5 we have g5, < 7s.
(6) Let g be a weak fuzzy candidate over F for (N, h,P,R,9),Z). We say that
a condition r € P is (M, Q))-fuzzy generic for ¢ (over (N,Z,h,P, F)) if
Generic has a winning strategy in the game Dguzzy(r, N,Z,h,P,F,q).

Remark A.3.5:
(1) For any two lists Z', 72 of open dense subsets of P from N, on a club E
of A\ we have

{Ig:§<5}:{I§2:€<5}

for € E. Thus the corresponding notions of exactness agree for § € E.
As Generic can choose C; C F, in A.3.4(4,5,6) we may not mention Z as
a parameter.

(2) Plainly, every fuzzy candidate is a weak fuzzy candidate.

Definition A.3.6: Let P be a (<\)-complete forcing notion.
(1) We say that P is fuzzy proper over quasi D-diamonds for W when-
ever for some A-base (3R,9)) for P over W and for some ¢ € H(x),
(®) if e N =< (H(x),& <), IN| =X <*NC N, \P,¢,R e N, and
¥ NANAeW,pePNN,
e h: A — N satisfies PN N C Rng(h), and
e [is a quasi D-diamond for (N, h,P) and § is a fuzzy candidate
over F,
then there is 7 € P stronger than p and such that r is (9, 9)-fuzzy generic
for q.
(We may call (R,2)) and ¢ witnesses for fuzzy properness.)
(2) P is strongly fuzzy proper over quasi D-diamonds whenever for
some A-base (R, %)) for P over W and for some ¢ € H(x),
(®)* if  ® N <(H(x),&€ <), IN =X <*N C N, \,P,¢c,R € N, and
e NNAeW,pePNN,
e h: A — N satisfies PN N C Rng(h),
e [ is a quasi D-diamond for (N, h,P) and ¢ is a weak fuzzy
candidate over F,
then there is a condition r € P stronger than p such that r is (9, 9)-fuzzy
generic for .
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(3) P is weakly fuzzy proper over quasi D-diamonds whenever for some
A-base (R,9)) for P over W and for some ¢ € H(),
(®)~ if e N < (H(x),& <), IN| = A <AN C N, \,P,¢c,R € N, and
X NNAeW,pePNN,
e h: A — N satisfies PN N C Rng(h),
then for some quasi D-diamond F for (N, h,P) and a weak fuzzy candi-
date g over I, there is a condition € P stronger than p such that
7 is (R, Q)-fuzzy generic for g.
(4) P is fuzzy proper for W if it is fuzzy proper over quasi D’-diamonds for
every normal filter D’ on A (which has diamonds). Similarly for strongly
fuzzy and weakly fuzzy proper.

Remark A.3.7: Strong fuzzy properness is very close to properness over
semi-diamonds of Rostanowski and Shelah [16] and even closer to proper-
ness over diamonds introduced by Eisworth [6]. (Note that considering
the condition A.3.6(®)T we may assume that the weak fuzzy candidate
d = (¢sx : 0 € Sislimit & x € Xj) is such that |X5] = 1 for each relevant
d, so one may treat it as ¢ = (gs : 0 € S is limit ).) Thus fuzzy properness
has a flavour of a weaker property. However, the differences in technical details
of the conditions introduced in this section and those in [16] and/or [6] make
it unclear if there are any implications between the “properness conditions” in
this section and those in the other two papers.

PROPOSITION A.3.8: Let N,P, h,Z,R,2) be asin A.3.4, F = (F5s:6€ S) be a
D-pre-diamond. Assume also that the forcing notion P is (<\)-complete.

(1) There exists a fuzzy candidate q§ over F for (N, h,P,3R,2),T). In fact we
can even demand:

(+) for every a < A, for every large enough 6 € S, q5, € I, for all
z € Y(9).

(2) If r is (R,D)-fuzzy generic for some weak fuzzy candidate q, then r is
(N, P)-generic (in the standard sense).

(3) Assume that a condition r is (N, P)-generic (in the standard sense), F' is
a quasi D-diamond and § is a weak fuzzy candidate over (N,T,h,P, F).
Suppose that Generic has a strategy in the game Dguzzy(r, N,Z,h,P,F,q)
which guarantees that the result (r;,C; : i < X) of the play satisfies
A.3.4(5)(8). Then she has a winning strategy in Df\uzzy(r, N,Z,h,P,F,q)
(i.e., one ensuring (o) + (B) of A.3.4(5)).

(4) IfP is fuzzy proper over quasi D-diamonds, then it is weakly fuzzy proper
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over quasi D-diamonds. If P is strongly fuzzy proper over quasi D-
diamonds, then it is fuzzy proper over quasi D-diamonds.
Assume that P is weakly fuzzy proper over quasi D-diamonds, i > A,
Y C [u|S*, A* CH(x), W* C [A*]* (Y, A*, W* € V). Then:
(a) forcing with P does not collapse AT,
(b) forcing with P preserves the following two properties:
(i) Y is a cofinal subset of [u]<* (under inclusion),
(ii) for every x € H(x) there is N < (H(x),€,<}) such that
IN| =\, AN C N, NN A* € W* (i.e., the stationarity of
W* under the relevant filter).

Proof:

(1)
(2)

Immediate (by the (<\)-completeness of P; remember A.3.3(c) and that
R € N; note that 9,(5) € N).

Remember that 0 ¢ S, so in the game Diuzzy(r, N,Z,h,P,F,q) the condi-
tion rg is chosen by Antigeneric. So if the conclusion fails, then for some
P-name o € N for an ordinal we have r | “a € N”. Thus Antigeneric
can choose rg > r so that ro IF “a = «p” for some ordinal oy ¢ N, what
guarantees him to win the play (remember clause («) of A.3.4(5)).
Generic modifies her original strategy as follows. During the play she
builds aside a <p-increasing sequence of conditions (p; : i € A\ S) CPNN
such that p; < r; for i € A\ S. Arriving to stage i + 1,4 € A \ S, she has
two sequences: (r;,C; : j < i) (of the play) and (p; : j € i \ S) such that
p; < r;. Now Generic picks p; € PN N such that

(Vie€i\S)(pj <pi) and (V€ <i)(pi € L¢),

and p;, r; are compatible. (Remember: the set of all p € P such that p € Z
for all £ < i and for each j € i\ S either p; < p or pj, p are incompatible
is open dense in P and it belongs to N. Now use the assumption that r
is (N, P)-generic). Next she replaces r; by a common upper bound of p;
and r;, pretending that that was the condition played by her opponent,
and then she plays according to her original strategy. One easily verifies
that this is a winning strategy for the Generic player.

Straightforward (remember that, by A.3.1(3), there is a quasi D-diamond
and by A.3.8(1) there is a fuzzy candidate over it).

Follows from (2) by the same arguments as used in the “standard proper
forcing” version of this claim. |
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PROPOSITION A.3.9: (<AT)-complete forcing notions are strongly fuzzy proper
for W.

Proof: This is essentially a variant of [16, 2.5], but since we did not give the
proof there, we will present it fully here.

So suppose that a forcing notion P is (<AT)-complete. Let R = R (P) be
the trivial relation consisting of all triples (p,d,0) such that p € P and § < A
and let Y be such that P (5) = {0} (for each § < A, a € W). Assume now
that

e N < (H(x),&<}), IN|=X *NCN,\PeN,and a

e pePNN,and h: A — N satisfies PN N C Rug(h),

o F=(F5:6€S)isaquasi D-diamond for (N, h,P) and G is a weak fuzzy
candidate over F. Since 2)¥(§) has a one member only we may think of g

d:emeAEW,

as a sequence (gs : § € S is limit).
Let Z = (Z¢ : £ < \) list of all open dense subsets of P from N.

We are going to build a condition r € P stronger than p which is (R, Pt7)-
fuzzy generic for ¢q. For this we inductively build a <p-increasing sequence
(r} i < A) CPN N such that

o 70 =0 Tip1 € Ne<i L,

e if there is an upper bound to {r : j < i} U{g;}, then r{ is such an upper

bound.

Then we pick any upper bound r to the sequence (r} : i < ) (remember: P is

(<AT)-complete). Now we want to argue that Generic has a winning strategy
in the game Dguzzy(r, N,Z,h,P,F,q). Since r is (N,P)-generic it is enough to
give a strategy for the Generic player which ensures that the result of the play
satisfies A.3.4(5)(8) (by A.3.8(3)). To this end note that there is a club Ey of
A such that

e every member of Fj is a limit of ordinals from A\ S,

e for every § € Ey and i < 6,
{qg€P:q>r} or qr; are incompatible} € {Z¢ : £ < 6},

Let Generic play so that arriving to a stage 6 € S of the play she puts FEjy
and the <}-first upper bound to the conditions played so far. Why does this
strategy work? Let (r;,C; : i < A) be the result of the play in which Generic
plays as described above and let 6 € SN (), 5 C; be a limit ordinal such that
(ho Fs(a) : a < §) is a <p-increasing Z-exact sequence and

(Va < 6)(Fi < §)(ho Fs(a) < 1y).
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Then no 7}, h o Fs(a) (for i, < §) can be incompatible, so (since § € Ey and
(ho Fs(a) : a < §) is Z-exact) we have also

(Vi < 0)(Fa < 8)(r; < ho Fs(a)),
and hence g5 is stronger than all r (for i < §). Therefore ¢; < r§ < rs. |

THEOREM A.3.10: Let A,W, D be asin A.3.1 and let Q = (Pa, Qo s @ < ¢*) be
a A-support iteration of (<\)-complete forcing notions, and assume that (* C A.
Suppose also that for each ¢ < ¢* we have 9¢ and P¢-names Re¢, ¢ such that

ke, “Qc¢ is fuzzy proper over quasi D-diamonds for W
with witnesses (R¢, D) and c¢”.

Then Pe+ = lim(Q) is weakly fuzzy proper over quasi D-diamonds.
Note: in the assumptions of A.3.10, 2°¢ are objects not names, i.e., P¢ € V.

Proof: By A.1.5, the forcing notion P¢« is (<\)-complete, so we have to concen-
trate on showing clause A.3.6(3)((®)7) for it. The proof, though not presented
as such, is by induction on (*. However, the inductive hypothesis is used only
to be able to claim that A, W, D are as in A.3.1 when considered in the interme-
diate universes VF¢ (for ¢ < ¢*) — remember A.3.8(5). Thus our assumptions
on Q¢’s are meaningful.

Let us fix a convenient D-diamond sequence F’ = (F} : § € S) (so in par-
ticular, S € DT contains all successors, A \ S is unbounded in A and 0 ¢ S).
Put

jore {6 < A: 0 is alimit of points from A\ S}, Ei e (A\ S) U Ep.

Plainly, Ey, E; are clubs of A\. Let (i, : @ < A) be the increasing enumeration
of E1 and By = EgN{a < A:i, = a} (So Es is a club of A too).

For each a € W fix a one-to-one mapping m,: aN¢* — A such that m,(0) =0
(say, mq is the <%-first such function), and for o < X let wl = (ma) ™~ '[ia] (s0

an C* = Ua<,\ wgy)'
For ¢ < ¢* let RI< consist of all triples (p,6,%) € Pe x A x A such that for
some non-empty w € [¢(]<* we have

T=(xc:ccw) and (Veew)(plelrp, “(p(e),d, xe) € R).
Next, for ( < {*, a € W and § < A we put

(6) = [[{5(6) : e € wi N ¢},



Vol. 159, 2007 SHEVA-SHEVA-SHEVA: LARGE CREATURES 137

thus defining Qﬂfl and Pl = (Q_jLC] ca € W). If ¢ = ¢* we will omit it (so then
we write R and 9)).

Cram A.3.10.1: For each ¢ < ¢*, (RIS, D)) is a A\-base for P; over W.

Proof of the claim: Immediate, by the definition of R[¢!, <] we see that clauses
(a), (b) of A.3.3 hold (note: QJLC] (0) Ca by A.3.1(1)). Now, to verify A.3.3(c),
suppose ¢ € P¢, a € W and § < A is a limit ordinal. For each € € w§ N ( let
p'(€), 2L be P.-names such that

qle lFp, “p'(e) > qle) &z € D;(0) & (p'(e), 0, 2L) € R,

and for ¢ € Dom(q) \ w§ let p’(e) = ¢(e). This defines a condition p’ € P¢
stronger than ¢ (and names z.). Since P¢ is (<A)-complete we may find a
condition p > p" and z. € Y5(9) (for € € w§ N () such that ple IFp, “zl = 2.7

(for € € w§ N ¢). Then, by A.3.3(a), we have ple IFp_“ (p(e),0,z.) € R 7 (for
each e € wg N (), and (p, 4, (ze : e € wE N () € R, |

Our aim now is to show that P« is weakly fuzzy proper with witnesses (9R,2))
ande= ((cc 16 <), (R e <), R,9D,S,D, F',Q). So suppose that a model
N < (H(x), €, <}) satisfies

INl=\, *NCN, M\NPe.ceN, aNnaew,
and p € Pe NN, and h: A — N is such that Pc» NN C Rng(h). To simplify
the notation later, let m = 74, w, = w2 (for a < A).

Let us fix a list Z = (Z, : @ < ) of all open dense subsets of P¢« from N.
For ¢ € (¢* + 1) NN, let T = (T . o < A), where T = {p [ ¢ : p € T}
(Note that ZI¢ lists all open dense subsets of P from N.) Also for ( € (* NN
let Jo = {p € Pe- : pIC IF p(C) # 0g.} (so J¢ is an open dense subset of Pc-
from N) and let B3 = {a € Ey : (V¢ € wo)(30 < a)(J: =Zp)}. Clearly, E3 is
a club of .

Now, using the diamond F' fixed earlier, we are going to define a quasi D-
diamond sequence F' (and then a weak fuzzy candidate ¢ over it) that will be
as required by (®)~ of A.3.6(3). So, for each 6 € S we let

Z(6) ={Ce (" +1)\ {0} : ((ho Fj(a)) [ ¢ : a < J) is a <p -increasing
Tl exact sequence of members of N N P:}
and if Z(6) # 0 then we put v(§) = sup(Z(d)). Note that Z(§) € N and thus

7(8) € N (when defined). Now, the pre-diamond F = (Fj : § € S) is picked so
that for a limit 0 € S:
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(©)1 if Z(6) # 0, then ho Fs(a) = (ho Fi(a)) | v(0) for all a < 6;
(©)2 if Z(8) = 0, then ho Fs(a) = lp_. for all a < 4.

Then easily F is a quasi D-diamond for (N, h,P¢+) and for each limit § € S,
(hoFs(a):a <) is a <p.-increasing sequence of conditions from P¢- N N.

Note that (9) is chosen for Fj and not Fs. It could happen that above v(d),
ho Fj(a) gives us something that is not a name, and this (and not exactness)
is the reason why ~y(0) is not larger. Then (if our list of open dense sets is tricky)
it could happen that ~(d) is small but the sequence ((h o Fs(a))[¢ : a < §) is
Tl exact. This is exactly the reason why we will need E3 — the exactness at
0 € E3 implies that the domains of conditions are large enough.

Just for notational simplicity, we will identify a sequence & = (o) with its
(only) term 0. Thus below, when we talk about a standard (w, 1)< -tree T, we
think of T" as a set of sequences t = ((t)¢ : ( € wNrk(t)) where (¢)¢’s do not
have to be sequences.

Now we are going to define sequences p = (p; : ¢ < A) C P~ NN,
(75 : 6 € Sislimit ), and (g5 : 0 € Sislimit & t € T5) C P+ NN such
that for a limit ordinal § € S:

(i) Ts = (Ts,tks) is a standard (ws,1)¢ -tree, and (under the identification
mentioned earlier) {t € Ts : tks(t) = ¢} C Qﬂfl (0) for ¢ € ws U{¢*}, so
(t)e € DE(0) for t € Ts, € € ws N1ks(t),

(ii) {(gs.:t € Ts) is a standard tree of conditions in Q,

)
(iii) p<p; <pjfori<j<A,
(iv) if j < A, then w; € Dom(p;) and (Ve € w;)(¥j’ > j)(p;(e) = pj(€)),
)

(v) if t € Ty, rks(t) = ¢, then g5 € Pe NN is such that
(2) ((Uas Dom(fh o F3()) U, Dom(p) ) N ¢ € Dom(gs,),
(b) (Voo < 8)((ho F5)(a)I¢ < gs,t), and

(c) if e € Dom(gs) \ ws, then

gs,¢ | €I “if the set {p;(e) : i < I} U{(ho Fs(a))(e) : a« < 8}
has an upper bound in Q.,

then gs,:(¢) is such an upper bound”,
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(d) if e € Dom(gs,¢) N ws, then

gs,¢ | €I “if the set {p;(e) : i < I} U{(ho Fs(a))(e) : « < &}
has an upper bound which obeys (t). at d,
then g5, (g) is such an upper bound,
else ¢s5.¢(¢€) is an upper bound of

{(ho Fs(a))(e) : @ < §}which obeys (t). at 67,

(e) gst € ﬂg<5 Ig[d,
(vi) ift € Ty, ¢ = rks(t) < ¢*, ¢’ € ws U{C*} is the successor of ¢ in ws U {(*}
and t',t" € Ts are such that rks(t') = rks(t”) = ¢', t < ¢/, t < ¢’ and
t' # ", then

gs,t IFp, “the conditions gs.v(¢) and g5, (¢) are incompatible”

(and so also the conditions ¢s 4, ¢s+ are incompatible),
(vii) if t € T5 and € € Dom(gs,) \ ws, then € € Dom(ps) and

psle I “if gsile € Tp, and {pi(e) : i < 0} U {gs.(c)}
has an upper bound in Q.,

then ps(e) is such an upper bound”,
(viii) if t € Ty, ks (t) = ¢ < ¢*, z € PD5(J) and

st Ifp. “there is no condition stronger than all

(ho F5(a))(C) for @ < ¢ which obeys z at §”,

then there is ¢’ € Ts such that ¢ < ¢’ and (¢'); = .

Assume that § < A and we have defined p;, 7;, g; + for relevant ¢ < 6 and ¢. If §
is not a limit ordinal from S, then only ps € P¢~ N N needs to be defined, and
clauses (iii), (iv) can easily be taken care of. So suppose that ¢ € S is limit.
First we let 7/ be a standard (ws, 1)¢ -tree such that {t € T} : vks(t) = ¢} =
Pl (6) (for ¢ € ws U{¢*}). For t € T§ we define a condition 7 € Pry (1) so that

Dom(r:) = ( U Dom(h o Fs(a)) U U Dom(p;) U w5) Nk (t),
a<é i<é

and for each ¢ € Dom(r;), 7¢(¢) is the <}-first Pc-name for a condition in Q¢
such that:
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if ¢ € ws, then

r¢[¢ IFp, “if the family {p;(¢) : i < 6} U {(ho Fs(a))(¢) : o < 6}
has an upper bound which obeys (t)¢ at 0,
then 7:(¢) is such an upper bound,
if the previous is impossible, but there is an upper bound of
{(hoF5(a))(C) : @« < ¢} which obeys (t)¢ at 6
then r¢(¢) is such an upper bound,
if neither of the previous two possibilities holds,

then r¢({) is an upper bound of {(h o F5(a))(¢) : o < 0}”,
and if ¢ ¢ ws, then

7¢[¢ IFp, “if the family {p;(¢) : i <} U{(ho Fs(a))(¢) : a < 6}
has an upper bound, then r;({) is such an upper bound,
if this is not possible, then 7;(¢) is just an upper bound of
{(ho Fy(@)(Q) : a < 6},

Plainly, |T5| < A and 7 = (r¢ : t € Tj) is a standard tree of conditions, and
it belongs to N (remember: <*N C N). So using A.1.9 in N we may pick a
standard tree of conditions 7 = (r; : ¢t € T5) € N such that 7 < 7 and for
each t € T} and ¢ € ws NrKj(¢) the condition 77 ¢ decides the truth value of
the sentence

“r; (¢) obeys (t)¢ at § (with respect to R¢)”

(remember the choice of :(¢) for ¢ € ws and A.3.3(a)). Put
Ts = {t € Ty : for each ¢ € ws NrKj(t), r{[¢ Ikp, “rf(C) obeys (t)¢ at 67},

and notice that Ts € N is a standard (ws, 1)¢ -tree.
Let us argue that for each ¢ € Tjs there is ' € Tys such that ¢ < ¢’ and
rks(t") = ¢*. First note that, by our choices we have:
o ((hoFs5)(a) : o < §) is an increasing sequence of conditions in P¢«,
e foreacht € T} and e < §, the condition r is stronger than (hoFs)(c) | rkj(r¢),
e every t € Ty can be extended to an element of 7§ with rank ¢*, as a matter
of fact, if t € T}, 1kj5(t) = ¢ < ¢* and x € Y5(J), then ¢t~ (z) € T}.
Suppose now that t € Ts, ¢ = rks(t) € ws (so also t € T} and rkj(¢) = (). For
each z € Y5(5), t™(z) € T}. So T{~(y) 18 defined and by the choice of 7 the
condition r; decides the truth value of “r;’;<w> (¢) obeys x at 6”. We are going to
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argue that for some z € 2)2(5) the decision above is positive, i.e., r; = 7“21<Z> [
forces that “ry () obeys z at §”. This will imply that ¢~ (z) € Ts.

The condition ry is stronger than r;, so by what we said earlier it forces
that “((h o Fs)(a)(¢) : @ < 0) is an increasing sequence of conditions in Q¢
and therefore it has an upper bound”. Now look at A.3.3(c) and apply it to a
condition ¢ which is stronger than all (h o F5)(a)(C): 7} also forces “there are
an x € 25(6) and a condition ¢’ € Q¢ stronger than all (ho Fs)(a)(¢) for a < §
and such that ¢’ obeys 7. It follows from the choice of 74~ (4 (¢) for z € 5(6)
that r; forces “there is an @ € 95(6) such that r,~,(¢) obeys z at §”, and
therefore also r; forces “there is an @ € Y (8) such that r; () (C) obeys x at &7
(remember A.3.3(a)). Therefore, it cannot be the case that for all z € 25(4),
ry forces “r;;<z>

Proceeding inductively in this manner, we may extend any sequence in Ts to

(¢) does not obey z at 6”, so we can pick z as desired.

one with rank (*.

Finally, using A.1.4 and A.1.9 next in N we may choose a standard tree of
conditions (g5, : t € Ts) € N which satisfies clauses (vi) and (v)(e) and such
that r; < ¢s4 (for ¢ € Ts). It should be clear that then 75 and (gs; : t € Ts)
satisfy all the relevant demands from our list ((i)—(viii)). Now finding a condition
ps € Pex NN which satisfies (iii)+(iv)+(vii) is straightforward. (Note that, by
(vi), if ¢,t" € Ts, ¢ € Dom(gs ) N Dom(gs), € ¢ ws and the conditions
@s.v[€, ¢s,17 € are compatible, then g5 [(e + 1) = g5 [(e + 1).)

For a limit ordinal § € S and { € NN ({* 4+ 1) we let

o X[ = {t1¢:t e Ty rks(t) = C*);

o if s € Xg[d, then qgf]s = ¢5.¢[¢ for some (equivalently: all; remember (ii))
t € Ts such that s <t and rks(t) = ¢*;

o gl¢l = <q([fl 10 €8 is limit &s € Xé[d);

e hldd: X — N is such that hl<)(v) = (h(v)) | ¢ provided h(¥) is a function,
and hl¢l(y) = 0p, otherwise.

Plainly, 0 # X}C] C QJLC] (6) (remember (i)) and Al¢) : A — N is such that
P NN C Rng(hl)). Moreover, one easily verifies the following

CrLAM A.3.10.2: Let ¢ € NN(¢*+1). Then F is a quasi D-diamond sequence
for (N, h[C],]P’C) and §l¢! is a weak fuzzy candidate over F' for

(N, h[C],PC, m[é]v@[d’j’[d)_

We may write g, g5, X5 for q[f*],qgf], X}C*}’ respectively. Also note that, in
the context of our definitions, the functions h and h[¢] behave the same, so we

may identify them. Of course, we are going to define an (R, 9))-fuzzy generic
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condition r € P¢« for ¢ over F., but before that we have to introduce more
notation used later and prove some important facts.
For ¢ € (* N N we define a function A{¢) and Pc-names §<<>,2(§<>,Z&Q,F<O,
79 and g@ so that:
e n{Y) : X — N is such that if h(y) is a function, ¢ € Dom(h(v ) a
(R(7))(€) is a Pe-name then h(S (v) = ((h(7))(¢), otherwise h{S) () = (Z)@
o Ibp S0 = {5 € S+ if 6 is limit then §>m(¢) & (3s € X (gl) e T )}
o Ibp “if 6 € S(© is limit, then X = {z € P5(0) : (3t € Xs5)(qs11C €
Ip & ()¢ = 2)}”
o lFp, “g@ = <g§<; 10 € 849 is limit &a € €(§<>>”, where:
o lFp “if § € S(<) is limit and z € 2(550, then gffz = ¢5,+(¢) for some (equiv-
alently: all) ¢ € Xs such that gs;[¢ € T'p, and (t)¢ = 2”
(again, remember (ii));
o lbp “ FO = (F5:6€ 59)7;
o lkp “Z( > (Z&Q a < \)”, where:
o Ip “I ={p):peZo&pl (eTp}".
Naturally, we treat h{¢) as a Pc-name for a function from A to N [[p.]. Observe
that IFp, “N[I'e.] N Q¢ € Rng(h{®)”, and
IFp, “Z(©) lists all open dense subsets of Q¢ from N[Tp]”.

Cram A.3.10.3: Assume that ( € NN ¢* and r € P is a (R, Pl -fuzzy
generic condition for ¢! over (N, Z¢], h[C],PC, F). Then

(1) 7lkp, “S) € D7,

(2) 7 lkp, “F{¢) is a quasi D-diamond for (N[Tp_], h{9,Q¢)”, and

(3) 7lFp, “g@ is a fuzzy candidate for (N [I'p_], h<<>,(~@<, Re, DC) over FQ7,

Proof: (1) Will follow from (2).

(2) Assume that this fails. Then we can find a condition r* € P¢, a Pc-name
P~ /

7 = (g
and P¢-names Ag, Be for members of D NV such that r <p, r* and

s < ) for an increasing sequence of conditions from Q¢ N N[I'p],

ke, “(V6 € A Ag)((gq 2 a < 90) is Z(9-exact ) and
E<A

(V6 € 89N A Be)((h' o Fs(a) : e < 8) # G [ 6).
E<A -
Consider a play (rj,C; : j < \) of the game Df\uzzy(r, N, 7l pld P, F, gLy in
which Generic uses her winning strategy and Antigeneric plays as follows.
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Together with choosing r; (for j € A\ 5), Antigeneric chooses also side con-
ditions p € N NP¢, sets A¢, B¢ € D and P¢e-names ¢& € N for elements of Q
] ¢ ¢, Be ¢ a Q¢
(for £ < j) such that
e 1; > 1* (so rg > r*; remember Antigeneric plays at 0), r; > r; (for i < j),
and r; > p;r and
o 7jlrp “(V€ < j)(Ae = Ac & Be = Be &g = ¢¢)”, and
e if j/ < j are from A\ S, then p;r > p;r/, and p;r € Ne<
. pj IFp, “(Véo < &1 < J)(gg, < ¢¢,)", and
. . ~ . +1
e if 6 <j, 6 €5 Ae, then pj (g7) GIgK I for all € < 6.
(The Cj’s are not that important for our argument, so we do not specify any

j Iéd, and

requirements on them. Regarding the choice of the p;"s, remember A.3.8(2); for
the last two demands remember that ¢’s are (forced to be) increasing.) After
the play, Antigeneric completes (p;' :j € A\ S) to a <p -increasing sequence
(p;r 17 <Ay C NNP; letting p;r = pj;in(/\\s\(jﬂ)) for j € S.

Note that if 6 € Ep is a limit of elements of A, , A¢, then the
sequence <p;rﬁ<g§> : j < 0) is T+ exact and increasing (and (ijr D j < 0)
is Zl<-exact). So, as D is normal and A¢,Be,C; € D and F is a
quasi D-diamond for (IV, h[CH],]P’CH) (by A.3.10.2), we may find an ordinal
§ € SNENAgyAc N Deoy Be N A, Cy\ (m(¢) + 1) which is a limit of
members of A, A¢ and such that (RISt o F5(5) 1 j < 6) = (pj,\@;f) 1§ < 6).
By the choice of F' we know that h(Fs(j)) is a condition in P¢« (so a function)
and hence h{%) (F5(j)) = g for all j < 4. Also

(Vi < 8)(3j € 3\ S)(h<T o Fy(i) <p, h 0 Fs(j) = p} <e, 7).

]

Since the play is won by Generic, for some s € X, 5[4 we have q([fl < rs. But then

rsl- 0S890 A Be & (WY oF(a):a <) =q10",
£<X

a contradiction.

COMMENT ON THE PROOF ABOVE: for these arguments we really need more
than just (N, P¢)-genericity of r, as we need to know that rs forces § € S(¢ (see
the definition of F(<); note also part (1) of A.3.10.3). Now look at the definition
of ${©. Note that F{¢ is (a name for) a subsequence of F'; without doing
something that involves ¢ we could get into the situation where the domain of
this subsequence is non-stationary. Playing the fuzzy game works well here.

(3) Straightforward (remember the choice of g¢s:’s, specifically clauses
(v)(b,d,e) and (viii)). |
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Now we are going to define an (2R, ))-fuzzy generic condition r € P for § over
(N,Z,h,P¢+, F) in the most natural way. Its domain is Dom(r) = ¢* N N and
foreach € (* NN

[ CIEr(C) = pr(e)+1(C) is an (R, @C)—fuzzy generic condition for q<<>
over (N[Ip ], 2, nt¢ QC FlOy.

(Sor >p; foralli <)

CramMm A.3.10.4: For every ¢ € (¢*+1)N N, the Generic player has a winning
strategy in the game Dfuzzy( ¢, N, ZIEL Rl P B glél).

Proof of the Claim: We will prove the claim by induction on ¢ € (¢* +1) N N.
After we are done with stage ¢ € (¢* +1)N N, we know that r[¢ is (R, PI))-
fuzzy generic for ¢l<! over (N, Z¢, h[C],PC, F). For ¢ € ¢* N N this implies that
r(¢) is well-defined (remember A.3.10.3). Of course for ¢ = ¢* we finish the
proof of the theorem.

Suppose that ¢ € (¢* +1) N N and we know that r | ¢’ is (R, PL)-fuzzy
generic for ¢’ over (N, f[cl],h[CI],PC/,F) for all ¢’ € NN {. We are going to
define a winning strategy st for Generic in the game

anZZY( I¢, N, 7l¢] hK],PC, F, q[é]).
First, for e € ( N N fix a P.-name st. such

rle IF “ste is a winning strategy of the Generic player

in the game D) (r(¢), N[['p,], 2, h'9,Q., F, ).

We will think of st. as a name for a function from <A-sequences of members of
Q-xD (thought of as pairs of sequences of the same length < \) to Q: x D such
that if (z,C) € Dom(st.) and & has an upper bound, then the first coordinate
of st.(g,C) is such an upper bound (and, of course, any play according to st.
is won by Generic). (In a play of Dfuzzy( (e), N[['p.], 29, b, Q., F), )
only the values of st. at “legal partial plays according to st.” matter, but it is
notationally convenient to have st. giving values for all sequences of elements
of Q: x D, even if first coordinates are not increasing, as well as for sequences
after which Antigeneric should play.)

We will describe the strategy st by giving the answers of Generic on in-
tervals S N [iq,i0+1) (for a < A), where, remember, (i, : o < A) is the
increasing enumeration of 7. Aside the Generic player will construct sequences
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(r’s(e) : j' < X\,e € (N N) and (Qj(s) 1 7,€ < A\ e € (N N) so that, letting

r; € P¢ be the conditions played in the game,

(#)1 1% (¢) is a P--name for a member of Qk, QE, (¢) is a P.-name for a member
of DNV, and

(¥)2 fa < A, 6 =min(SN[ia, ia+1)), and € € we4+1NC¢, then after the 6-th move
(which is a move of the Generic player) the terms 17, (¢), <Q§/ (e): &< A)
are defined for all j* < i411, and

(¥)3 if & < A\, € € way1 N ¢ and p* € P, is stronger than all r;le for j €
(ia + 1)\ S, then

p* ke, “(Vj € (ia + 1)\ S)(r;(e) <17, ()",

(¥)g if @ < A\, € € way1 N¢ and r;_ 41 is the condition played by Generic at
stage 1o, +1 € S, then

”

Tigt1lelFp. “(V5' <iag) (0} (e) < 7ig41(€))”,

(x)s for each e € NN,
rle IFp, “(1’;- (e), A Qg(s) : 7 < A) is a legal play of the game

E<A

Df)‘\UZZY(,r(E)’ N[FPE] ’ z_'(a) ) h<€> ) Q87 F<E> q((s})

in which Generic uses st.”.
So suppose that a < A, 6 = min(S N [ia,%a+1)) and (rj,C; : j < J) is the result
of the play so far. Now Generic looks at ordinals € € wq+1 N (. She lets the
Pc-names 17, (€), Qﬁ/ (¢) be such that (1% (e), Doy QE, (€) 1 ' < ig41) is forced
by r]e to be a play of 2% (r(e), N[[p,], 2%, he,Q., F<€>,g<5>) in which the
moves are determined as follows. If € € w,,, then we have already the play below
io and the names 1} (¢), Qfa () are such that
e if i, =0 (i.e., iq € S and 74, C; have been chosen for i < i, only), then
rle lkp, “(r5, (), & Qf@ (€)) is the value of st.
E<A

applied to (r}(e), A Qﬁ(s) 1J <),
E<A

o if iy, <4 (ie, iy ¢ S sor;, C; are already chosen for ¢ < i,), then
rle lbp, “if (V5 < ’La)([; () < ri,(€)) then 1} (g) =14, (€)
otherwise 1} _(¢) is the first coordinate of st. applied to

the play so far, and Qf (e) = m . Cj for all £ < A”.
« J<ta
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Then for j € (ia,ia+1) (and & € wy N () the names 17 (¢), Q§ (€) are determined
by applying successively st., that is
rle ke, “(r)(e), A C’g( )) is the value of st.
E<A
applied to (1} (e), A C5,(e) : ' < j).7
E<A
If ¢ € (Wat1 \ wa) N ¢, then the Generic player defines the names 17 (¢), Qﬁ(s)
somewhat like above, but starting with subscript j = 0. Thus
e if i, =9, then

rle lFp, “ri(e) is the first coordinate of the value of st.
at (rj/(s),ﬂ_<_ Ci:j <ia)
and C5(e) = ﬂi% C; for all £ < A7,

e if i, < 9, then

rlelbp, “if (Vj < iq)(r;j(e) < ri, (¢)) then ri(e) = ri (¢)

otherwise r((¢) is the first coordinate of the value of st.
at (r;(e), ﬂKia Ci:J <ia)
and C5(e) = ﬂjgia C; for all € < X7,

Last, for 0 < j < in41 (and € € (wWat1 \ wa) N ¢) the names r}(s),QE(s) are
determined by applying successively st. (like earlier).

This defines the names 17 (¢), C’E( ) for j <igy1,€ < Aand € € w1 N It
is straightforward to check that the requirements (x);—(*)3 and ()5 restricted
to € € wa+1 N ¢ (and with “j < X7 replaced by “j < in4+1”) are satisfied.

Next, using the fact that P¢ is (<\)-complete and ()3 of the choice above,
Generic picks a condition 7* € P¢ such that

(x )6 r* > r; for every j < 4,

% le IF < ( ) <r*(e)” for every j < iq41 and € € way1 NE,

(%)7

(*)8 T € ﬂ§<z 1 Z¢, and

(x)g for every j',& < iqq1 and € € wq41 N ¢, the condition r*[e decides the
value of Qj,( g), say r*[e Ik “Qﬁ,( )= ng,( )”, where C’f,( yeDNV.

If iy, € S (s0 § =i, is a limit ordinal), then Generic picks a condition rt € P¢

stronger than 7* and such that for every ¢ € Xé[d and € € (ws NC) U {C} we

have:
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*)10 either the conditions T [ and q[d [ are incompatible, or q[d e <p. e,
o,t o,t &

(%)11 ife € wsN¢ and q([fl le <p. 77]e, and s € X(S[C] is such that t[e = sfe, then
either r* e H—“qgﬂ (¢),rT (¢) are incompatible” or r* e I- “q([f]s (e) <rt(e)”.

If 6 > i, (ie., iq ¢ S) then Generic lets 7™ = r*. Finally, for every j €
[iasia+1) NS she plays

rj=r" and C;=FE3N ﬂ{C’Jg,(E) 15 € <lat1,€ € way1 NCH

Plainly, r; y1 = r* satisfies clause (x)4.

Why does the strategy described above work?

Suppose that (r;, C; : j < A) is a play of the game O(r [ ¢, N, fK]hK],PC, F,q<)
in which the Generic player used this strategy and let (17, (¢) : j* < A\,e € (NN)
and (Q;é, (€) : 4,6 <\ e € (N N) be the sequences she constructed aside.

First let us argue that condition A.3.4(5)(5) holds. We will show slightly
more than actually needed to help later with clause (). Remember below
that ordinals () were defined when we picked our quasi D-diamond F, and
if ¢ < () then the sequence (hlFt o F5(a) : a < §) is ZTIF+-exact. Now,
suppose that a limit ordinal § € SN ﬂj<5 C; (so in particular § € Ej3) is such
that

(B)s ws N¢ C(8) and (Vo < 6)(Fj < 8)(hl o Fs(a) < 7)).

(So then (Ya < 6)(hl o Fs(a) < r5). Note also that by the choice of Ej, if
(o F5(a) : a < 6) is Tl¢)-exact, then ws N ¢ C (8). This is the only place we
need E3; compare the discussion after the definition of F'.)

We are going to choose t € XS[C] and show that q([fi < rs. We do this by
induction on € € (¢ + 1) N N, defining t[e € T5 and showing that gs.le =
Gtrele < r5le (and for € = ¢ we get the desired conclusion). Limit stages
and the initial stage € = 0 are trivial, so assume that we have defined ¢ and
have shown gs e e = gsile < 75le (where € € (N N), and let us consider the
restrictions to € + 1.

If ¢ ¢ ws then (e + 1) = t]e (so it has been already defined). Suppose also
that € € Dom(gse) (otherwise there is nothing to do). Look at the clause
(v)(c) of the choice of g5 at the beginning: rs > r > ps (and (H)s) implies
that

rs | €IF “gsi1e(g) is an upper bound to {p;(¢) : i < §}”.

But then also by the clause (vii) there, r5le - “gs¢1e(€) < ps(e) < rs(e)”, so we
are done.
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Suppose now that e € wsN¢ (and thus e < v(0)). Since § € F3 C Es, we know
that arriving to stage ¢ of the game, Generic has already defined 1’ (¢), Qﬁ(s)
for j < § and £ < A (remember (x)2). Moreover, the condition rs[e forces that
(remember: (bt o Fy(a) : a < 6) is Tl¥HH-exact):

e the sequence (h{¥) o Fs(a) : a < ) is <q_-increasing Z%*)-exact, and
TG IVAVSS Qﬁ(s) : j < d) is a play according to st. (by (%)), and
§e 8t N e<s Qﬁ(e) (remember (x)g and the choice of C;_ 11 for a < §),
and hence also § € S/ N Nj<s Dear QE(E),
(Vi < 6)(Fj" < 0)(rj(e) < 1f(e)) and (Vi < 6)(35" < 0)(r(e) < ry(e))

(by (*)3 + (*)4), so also

(Va < 6)(Fj < 8)(hF) o Fs(a) <q. 1(e)).
Since st. is a name for a winning strategy, we may conclude that (by (x)7)

rsle b, “(Ge € X5 (a) < ri(e) < (o).

x

Now look at ()11 remembering clause (vi) of the choice of g: by them there is
a unique z € () such that letting (t). = « we get t[(e + 1) € Ts satisfying
Gere+1) (€ +1) <rsl(e+1).

This completes the inductive proof of A.3.4(5)(3).

Why does A.3.4(5)(a) hold? To show this condition, it is enough to prove
that (H)s holds for unboundedly many 6 € SNA,_, C; (remember clause (v)(e)
of the choice of ¢5+’s and what we have already shown). We do this considering
various characters of (.

¢ is a limit ordinal of cofinality cf(¢{) < \.
Pick a closed set u C ¢ such that u € N, 0 € u, otp(u) = cf(¢) and sup(u) = (.
For ao < A let €, € u be such that

a = otp(u Ney) mod cf ().

Now, by induction on a < A we choose conditions s, € N NP; such that
(a)a (37 < A)(sa <715),

(D)o Sa €P., NN,

(€)a If B < a < A, then sgl(ea Neg) < sallea Neg),

(d)

o 8a € <a 7l
So suppose that we have defined sg’s for § < a. For f < o let

Ia,ﬁ = {S = Paa :either Sﬁ rga S S,

or sgleq, s are incompatible}.
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Clearly Z,3 € N is an open dense subset of P, . Since the condition r[e,
is (N, P.,)-generic and the increasing sequence (r;leq : j < A) enters all open
dense subsets of P, from N (by (x)s), we may find sa € 5.4 Za,sMNMNj<q Ij[e‘*]
such that s, < 7;[eq for all j < Alarge enough. By (a)g (for 8 < «) we conclude
that s, and sgle, cannot be incompatible, and hence clauses (a)o—(d), are
satisfied.

Now, let conditions s, € P N N (for & < A) be such that Dom(s],) =
Up<a Dom(sg) and s (e) (for € € Dom(sy,)) is the <}-first Pc-name for a con-
dition in Q. satisfying

sy lelFp, “(VB < a)(sp(e) < si,(e)) and
if there is a v € [, A) such that (V8 < a)(s}(e) < s4(¢))
then s/, (¢) = s,(e) for the first such v”.

Then the sequence (s;, : @ < \) is <p_-increasing and
(Va < X) (Ve < €q)(sale IFp. “sa(e) = s,(€)).

So it follows from (d), that for each € € w there is a club C. C X\ such that
(s!.]e : a < 0) is Tl¥l-exact for all § € C.. Also, we may pick a club C* of A

such that
(V6 € C*)(Va < 8)(3F < 0)(s), <),

Now, as F” is a D-diamond, for unboundedly many § € SNA ;o\ CiNN.e, CNC
we have (s], : & < 0) = (ho F§(c) : < 6). Plainly, defining Fs for those § we
had clause (®); with v(6) > ¢ and hence (s), : a < 6) = (hl¢) o F5(a) : a < §).

Therefore (H)s holds for those § (remember the choice of C*).

¢ is a limit ordinal of cofinality > \.
Let (g4 : @ < A) € (N N be an increasing continuous sequence cofinal with
(NN, g9 =0. By induction on a < A choose conditions s, such that
(8)a (3 < A)(sa < 7),
(b)a 8a €P., NN,
()a if B < a < A, then sg < sq,
(d)a sa €Ny v,
(Possible as rleq, is (N, P, )-generic and by (x)g.) For each a < A, for some
club C/, of A we have

(V6 € C)({sy]€a : 7 < 6) is TlEal-exact).

Take a club C* of X such that for every § € C* we have:
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e wsN(¢ Ces, and

o (Va<d)(Tj<0)(sa <15).
Like before, as F' is a D-diamond, for unboundedly many § € S N B CiN
Aoy ChLNC* we have (sq 1 a < 6) = (ho Fyj(a) : a < §). Plainly, for those ¢
we have v(J) > e5 and also (s, : a < 8) = (hl¢) o F5(a) : @ < §), and thus (B);
holds (remember the choice of C*).

¢ is a successor ordinal.
Like before (remember that, letting ¢ = ¢’ + 1, the condition r[¢’ is (N,P¢/)-
generic and it forces that r(¢’) is (N[Gr,, ], Qc')-generic). |

This ends the proof of Theorem A.3.10. |

Remark A.3.11:

(1) In A.3.1 we may have S = (S, : a € W) and D = (D, : a € W) be
such that each D, is a normal filter on A, S, € D satisfies the relevant
demands of A.3.2(1), and require that there is a D, diamond (Fy' : § € S,).
Then in all definitions and results we may replace D, S by D,, S,, where
a = NNA. In particular, this way we get the notions of fuzzy properness
over quasi D-diamonds which behave nicely in iterations.

(2) Everything in this section goes through if we skip “exact” (and deal
just with increasing sequences of conditions). There would be almost
no changes in the proof of the iteration theorem. The reason why we
add “exact” everywhere is in examples we have in mind: we do not know
how to show that (some of) the forcings built later are fuzzy-but-without-
exact proper. Exactness makes fuzzy properness a weaker condition as
(Fz € Xs5)(gs, < rs) of A.3.4(5)(8) has to be fulfilled for somewhat more
special § only. And with that our forcings are fuzzy proper, see §B.7.

B. Building suitably proper forcing notions

B.4. A CREATURE-FREE EXAMPLE. In this section we show that a natural
forcing notion uniformizing colourings on ladder systems is fuzzy proper. (This
forcing is a relative of Q* from [16, 4.6-4.8].)

Here we assume that:

Context B.4.1:
(1) A* > X is a regular cardinal, A = H.x(\*) and W C [A]* is as in A.3.1,
and A\ C a for each a € W,
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(2) & < A\, S* is a stationary subset of Sf\‘+ def {6 < AT :cf(6) = A} and for

b e S*:
(o) Bg C B is a club of 8 of order type otp(Bg) = A,
(B) hg: Bg — €.
Let B=(Bs:3¢€S*), h=(hg:B€S*).
The forcing notion Q* = Q*(S*, B, h) is defined as follows:
a condition in Q* is a tuple p = (u?,vP, eP, h?) such that
(a) uP € [AH]<A, oP € [S*]<A,
(b) e = (e} : B € vP), where each e} is a closed bounded subset of Bg, and
ey C uP, and
(c) sup(ef) = sup(u? N B) (for B € vP), and if B1 < B2 are from v?, then

sup(ef,) > f1 and  sup(ej, ) > sup(Bg, N f1),
(d) hP:uP — £* is such that
(VB € v")(Va € ef) (R (a) = hp(a));

the order < of Q* is such that p < ¢ if and only if u? C u?, h? C h%, vP C 09,
and for each 3 € vP the set e% is an end-extension of eg.

A tuple p = (uP,vP, &P, h?) satisfying clauses (a), (b) and (d) above will be
called a pre-condition. Note that every pre-condition can be extended to a
condition in Q*.

PROPOSITION B.4.2:
(1) The forcing notion Q* is (<\)-complete, it satisfies the A*-chain condition

and |Q*| = A*.
(2) If pe Q*, a < AT, B € S* and § < A, then there is a condition q > p such
that

acul, pev? and (V6 €v?)(otp(e}) > 9).

Proof:
(1) Verification of the chain condition is a straightforward application of the
A-lemma. To check that Q* is (<A)-complete suppose that (p; : i < j)

is a <g--increasing sequence of conditions from Q*, j < A. Let r =
(u",v",e", h") be such that
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v = vai, and for g € v"
i<j
ep = U{e’éi B evPi&i< U {sup(U{e’B”’ B evPi&i < j})}
u" = Uupi UU{eE:ﬂGvT}
i<j
) U hP
i<j
and if a € ey \U{e}y : B € vP',i < j}, then h'(a) = hg(a). Using clause (c) for
pi’s one easily sees that r is a pre-condition. Extend it to a condition ¢ € Q*.
(2) Should be clear. |

ProrosiTiON B.4.3: QF is fuzzy proper for W.

Proof: Suppose that D is a normal filter on A such that there is a D-diamond.
We will show that Q* is fuzzy proper over quasi D-diamonds. First we define
a A-base (R*,*) for Q* over W. We let R* be the set of all triples (p,d, x)
such that p € Q*, 6 € A and « is a function with Dom(z) C «? and (Vo €
Dorm(z))(h () = 2(a)).

Now suppose that @ € W and let 7, be the <} -first one-to-one mapping from
aN AT to A. For a limit ordinal § < X we put

ch = (1a) ' [S]U{a < AT :a =sup(an (ma) ']},

and then

D (6) = {z : x is a function from zj N a to £*}.

For non-limit @ < A we put 9*(a) = {0}. This defines Y’ and P* =
(Vi :a € W). It is easy to check that (:-*,2)*) is a A-base for Q* (for A.3.3(c)
use repeatedly B.4.2). Assume now that
e N < (H(x),€,<%), IN| = X, <*N C N, \,Q*,B,h,5*,R* € N, and
e NnAew,peQnN,
o 7= (Ze : £ < \) lists all open dense subsets of Q* from N,
e h: A — N satisfies Q* N N C Rng(h), and
o = (Fs:6 € S)is a quasi D-diamond for (N,h,Q*) and q is a fuzzy
candidate over F.
For limit § € S let Y(§) = Y(N,Q*, h, F,R*,9*,5) be as defined in A.3.4(3)
(and thus ¢ = (gs5» : 6 € S is limit &z € Y(0))). Also let Ey be the set of all
d < A which are limits of members of A\ S (so it is a club of \).
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We are going to show that the condition p is (R*,Q*)-fuzzy generic for g.
Note that, as Q* satisfies the AT-cc, the condition p is (N, Q*)-generic (in the
standard sense). So, by A.3.8(3), it is enough to give a strategy of the Generic
player in the game Df\uzzy (p,N,Z,h,Q*, F,q) which guarantees that the result
(ri,C; =i < A) of the play satisfies A.3.4(5)(5).

Suppose that we arrive to a stage 6 € S and (r;,C; : i < d) is the sequence
played so far. First, Generic picks the <}-first condition rs stronger than all
r;’s played so far and such that

if ¢ is limit and (Fx € Y(6))(Ir € Q*)(¢s,2 < r&(Vi < )(r; < 1)),

then g5, < 1§ for some x € Y(9).

Then she plays the <} -first condition r5 above % such that

()1 if B € v", then otp(ey’) > §, and

(x)2 (ma)"1[0] Cu™ and (m,) " L[6] NS* C o™

The set Cs played at this stage is (a, \) N Ey, where « is the first ordinal such
that

()3 me[u" N N] C a, and the set

{g€ Q" : (1) ' [0] C ul&(ma) 18] N S* C vi& (V3 € v?)(otp(e 5) >0)}

(which is an open dense subset of Q* from N; remember B.4.2) is in
{j% €< a},

()4 otp(Bg N (sup(ey’) +1)) < a for all B € v™,

()5 if B € v™ and aNB\(sup(ey )+1) # 0, then thereis v € anB\(sup(ey’ )+1)
with 7, () < .

Why does this strategy work (i.e., why does it ensure A.3.4(5)(3))?

Let (r;,C; : i < A) be a play according to this strategy, and suppose

that 6 € SN A;.,C; is a limit ordinal such that (h o Fj(a) : a < 0) is

a <g--increasing Z-exact sequence of conditions from Q* N N such that

(Vo < 6)(Fi < §)(ho Fs(a) < r;). Note that then

(¥)6 if B € U;50", then otp(U;5€j3) = ¢ and J;_sej; is an unbounded
subset of {¢ € Bg : otp(e N Bg) < 4}, and

(#)7 Uies ™ NN = (m0) 78] = Uy u (@) and

v NN = ()50 §° = | ofoPe),

<4 a<d
(¥)g if B € (ma)71[0] N S*, then

(el ™ s o < 08 € v} = | J{ef +i < 6&B € v}
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We want to show that
(&) for some x € Y(9), there is a common upper bound to {r; : i < §} U{gs}

(which, by the definition of our strategy, will finish the proof). For g € S*
let v € Bg be such that otp(Bs N y3) = 6. Now, let a pre-condition ' =
(u’”l, o e h’”/) be such that

o v =Usv" u" =Uisu Uy f e,

. egl = L/J{eg"' 11 < 0&pB e vt U{vys} (for /ﬁ € U"/),/and

o W7 :u" — & is such that |J,_;h" C h" and h" (y3) = h(vp).
One easily verifies that the above conditions indeed define a pre-condition (re-
member (x)g). Also, note that if 3 € v, then 5 € eg \Ulej 1i<d&pev}
and each ej is a proper subset of (J{ej : i < d&B € v™}. Moreover, if
B e v’ and v € N, then 75 = sup(u” NN Ng) = sup((ma)~1[6] N ys) (by
()5 + (%)2; remember also (x)7). Now, extend 7’ to a pre-condition " such
that " = u” Uzd, v = v" and eg/ = eg for 3 € v (clearly possible).
Let # = h™" 12§ (note that 2 C a). Since r” is stronger than all h o Fs(«) (for
a < 0), any condition stronger than r” witnesses that « € Y(J). Now we put

o y* =y | u’””, v* =y Y ’UT”, h* = h%.= U h’””,

e if € v%= then ep = eqﬂ‘”, and if 8 € o \ N, then es = eg/.

Note that h* is a function from u* to £&* by (x)7 (remember the choice of
and that ¢s, € N is stronger than all ko F5(a)’s). Also, if § € ™" N N then
(B € v95= and) e%‘s”“ is an end-extension of eg” (remember (x)7 + (*)s). Hence
(u*,v*,€*, h*) is a pre-condition stronger than both g5, and r”’. Extending it
to a condition in Q* we conclude (IJ), thus completing the proof of B.4.3. |

COROLLARY B.4.4: Assume that ) is a strongly inaccessible cardinal, 2* = AT,
22" = A\*+ and D is a normal filter on \ such that there is a D-diamond. Then
there is a forcing notion P such that:
e P is (<)\)-complete weakly fuzzy proper over quasi D-diamonds for W and
it satisfies the ATt -cc,
e in VP, 2X = 22" = X\t and for every €%, 5%, B, h as in B.4.1(2) there is
h: ATt — &% such that for every 3 € S* the set

{a € Bg : hg(a) = h(a)}
contains a club.

Proof: The forcing notion P is the limit Py++ of a A-support iteration Q =
(P, Qq : @ < ATT), where each Q, is forced to be @*(S§+,Ba,[_za) for some
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Ba, ho. Then, by A.1.10, A.3.10 and B.4.3 we are sure that P satisfies the A*t+-
cc, it is weakly fuzzy proper over quasi D-diamonds for W and it has a dense
subset of size ATT. Consequently we may arrange suitable bookkeeping to take
care of all Py; -names B, h for objects as in B.4.1(2) — the details and the rest
should be clear. |

B.5. TREES AND CREATURES. Let us introduce the notation used in the
forcing notions we want to build. The terminology here is somewhat parallel to
that of [15, §1.2, §1.3], but there are some differences as the context is different.
We start with the tree case.

Definition B.5.1: Let H: A — H(A™).
(1) A A-tree creature for H is a tuple

t = (n,dis, pos,nor) = (1[t], dis[t], pos|t], nor[t])

such that dis € H(AT), nor € A + 1,

S U l_IH(B)7 and (Z);éposg{ye U HH(ﬁ):nQV}.
a< B<a a< B<a
TCR?[H] is the family of all A-tree creatures for H.
For ) € Uy [15<q H(B) we let TCR)[H] = {t € TCRH] : n[t] = n}.
(2) Let K C TCR [H]. A tree-composition operation on K is a mapping
% with values in P(K) and the domain consisting of systems (¢, : v € T')
such that
e T is a complete A-quasi tree of height ht(T) < A, T = T\ max(T),
e for each v € T', t, € K satisfies v = nt,] and sucer(v) = pos|t,],
and
e ift € ¥(t, : v € T), then n[t] = root(T) and pos[t] C max(T),
eift e X(t, :veT)andt, € Y(sp i p€ T,) (for v € T), then
teX(sy:p€U,ep 1), and
e for each t € K we have (t) € Dom(X) and t € X(¢).
Then (K, X) is called a A-tree creating pair (for H).
(3) A A-tree creating pair (K, Y) is local if
e (t, : v € T) € Dom(X) implies ht(T") = lh(root(7T)) + 1 (and so
T = {root(T)} U postoot(1)]), and
e t' € ¥(t) implies nor[t'] < nor[t].
We say that (K, Y) is very local if, additionally, for every

ve J JTH®

a< B<a
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such that K N TCRAH] # 0 there is t* € K N TCR)[H] satisfying
(vt € K N TCR)[H])(t € %(t5)). The tree creature t* may be called
the minimal creature at v.

(4) If (K, X) is a very local A-tree creating pair, then the minimal tree T*
for (K,Y) and the minimal condition p* for (K,Y) are defined by

T* = T*(K,3)
={ne |J [] H®B) : (va <h(n))(nl(a+1) € pos[t),])}

a< B<A
pr=p"(K,X)=(t, :veT").

v

(Note that, in the general case, T* could be of small height, but in real
applications this does not happen.)

Definition B.5.2: Let (K,X) be a A-tree creating pair for H.
(1) We define the forcing notion Qi*°(K, X) by:
conditions are systems p = (t,, : n € T) such that
(@) 0 # T C Uycnllpeo H(B) is a complete A\-quasi tree with
max(T) = 0,
(b) t, € TCR;; [H] N K and poslt,| = succr(n),
(c)1 for every n € limy(T'), lim(norft,o] : o < A\, nla € T) = X;
the order is given by:
(ty :meT') <(t7 :neT?) if and only if
T? C T' and for each ) € T2 there is a complete \-quasi tree Tp ,, C (Tl
of height ht(Tp,,) < A such that t2 € X(t} 1 v € Tp,).
If p=(t, : m € T) then we write root(p) = root(T), T? =T, th = t,
etc.
(2) Let D* be a filter on . The forcing notion Q%¢°(K, X) is defined similarly,
replacing the condition (c¢); by

(c)p~ for some set Y =Y? € D* we have
(V6 € Y)(vn € (T)s)(norty] > |3]).

(The set Y? above may be called a witness for p € Q%%°(K,X).)
(3) The forcing notion Q%*°(K,Y) is defined by replacing the condition (c)q
by
(©)a () (YneT)(FveT)(n < v&norlt,] > |lh(v)]), and
(8) (¥ € T)(norft,] = 0 or norlt,] > |Th(n)]), and
(7) mor[tioet(p)] > |1h(root(p))|, and
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(0) if & < A is a limit ordinal and (n; : ¢ < ) C T is a <-
increasing sequence such that norft,,] > | lh(n;)| for each i < §
and 1 = {J; .5 7, then (n € T' and) norlt,] > [1h(n)|.

(4) If e € {1,D*,cl}, p € Q¥°¢(K,X) and n € TP, then we let

p = (2 v e (TP,

(5) For the sake of notational convenience we define partial order Q{*°(K, X)
in the same manner as Qi°¢(K,Y) above but we omit the requirement

(C)e-

Definition B.5.3: Let (K,X) be a A-tree creating pair for H, t € K. We define
a relation <% on X(t) by

t' <t " if and only if (¢, € £(¢) and) t” € X(t'). )
If (K,X) is very local, t is the minimal creature at v, then jtz” is also denoted
by =<¥.

Remark B.5.4:
(1) Note that the relation <& is transitive and reflexive.
(2) If (K,X) is local and p € Q*°(K,X), then T? is a complete \-tree.

Now we are going to describe the non-tree case of forcing with creatures. For
sake of simplicity we restrict ourselves to what corresponds to forgetful creatures
of [15, 1.2.5].

Definition B.5.5: Let H: A — H(AT).
(1) A forgetful A-creature for H is a tuple

t = (Qdn, up, dis, val, nor) = (aanlt], aup[t], dis[t], val[t], nor[t])

such that dis € H(A"), nor € A+ 1, agn < ayp < A and @ # val C
[aa, <p<an, HB).

CR*H] is the family of all forgetful M-creatures for H.

Since we will consider only forgetful A-creatures, from now on we will
omit the adjective “forgetful”.

(2) Let K C CR*H]. A composition operation on K is a mapping ¥ with

values in P(K) and the domain consisting of systems (t; : ¢ < j) C K such
that j < A and

ayplti] = adnftit1] fori<i+1<j, and
sup{aupltir] : ' < i} = agn(t;] for limit ¢ < j,



158

()

A. ROSLANOWSKI AND S. SHELAH Isr. J. Math.
and if ¢ € 3(¢; : i < j), then
e 0 = adnlt] = adnlto], @t = ayplt] = sup{aup(t:] 1 i < j}, and
evallt] C{re [[ H(B): (Vi <j)(vlaamlti] auplti]) € vallti])},
a-<B<at
and

o if t; € X(sp : ¢ < () (fori < j) and t € B(t; 2 i < j),
then t € X(s¢ : ¢ < ¢, i < j), and

e for each t € K we have (t) € Dom(X) and t € X(¢).
Then (K, Y) is called a A-creating pair (for H).
We say that (K, Y) is local if for each t € K

o auplt] = aan[t] +1, and

e t' € ¥(t) implies nor[t'] < nor[t].
It is very local if, additionally, for each o < A there is ¢}, € K such that
aanltl] = a and for every t € K with aqn[t] = @ we have t € X(¢%). The
creature ¢}, will be called the minimal creature t}, at a.
For j < A, a j-approximation for (K,Y) is a pair (w, (t; : i < j)) such
that t; € K,

uplti] = adnftit1] fori<i+1<j, and

sup{aupltir] : ' < i} = aan[t;] for limit i < 7,

and w € [], <4, 1) H().
For a j-approximation (w, (¢; : ¢ < j)) for (K, %) we let

pos(w, (t; : i < j)) = {v € H H(a) :w <t v and for all ¢ < j

a<la*

vl [aan[ti], auplti]) € val[ti]},

where o = sup{ayp[ti] 1 1 < j}.

Definition B.5.6: Let (K,X) be a A-creating pair for H.

(1)

We define the forcing notion Qj (K, X):
conditions are pairs p = (w, ) such that
(a) €= (t; : i < A} is a sequence of A-creatures from K satisfying

aup[ti] = qdnltiti] fori<i+ 1<\ and
sup{aupltir] : i' < i} = aan[t:] for limit i < A,

(b) w € [lacau, o) H(@)
(¢)1 lim(nor[t;] :i < A) = A



Vol. 159, 2007 SHEVA-SHEVA-SHEVA: LARGE CREATURES 159

the order is given by:
(wh, (¢ i < A)) < (w?, (2 :i < \) if and only if
for some continuous strictly increasing sequence (i¢ : ¢ < A) we have

w? € pos(w', (t] i < ig)) and (V¢ < )\)(tg €Nt i <i<icyr)).

If p= (w, (t; : i <)), then we write w? = w, t¥ =+¢; (for i < \).
(2) Let D* be a filter on A. The forcing notion Q%,. (K, ¥) is defined similarly,
replacing the condition (c); by

¢)p~ for some set Y = YP € D* we have
(c)
(Vi € Y)(nor[t;] > |aan[ti]])-

(The set Y? above may be called a witness for p € Q5. (K,X).)
(3) For the sake of notational convenience we define partial order Qj(K,¥)
in the same manner as Q%(K,X) above but we omit the requirement (c)..
If (K,Y) is very local, then the minimal condition p* for (K,Y) is

Pt =p (K, %) = (O {to e < A) € (K, %),

where ¢}, is the minimal creature at o.
(4) The relations <% and jtf:j% are defined in a way parallel to B.5.3.

B.6. GETTING COMPLETENESS AND BOUNDING PROPERTIES. In this section
we introduce properties of A-tree creating pairs ensuring that the resulting forc-
ing notions are complete or strategically complete. Next we show that adding
bounds on the size of H(«/) guarantees strong bounding properties from Section
A.2. Finally we will introduce parallel completeness conditions for the case of
A-creating pairs.

Definition B.6.1: Let (K,X) be a A-tree creating pair for H, k be a cardinal
(and A\, X be as in 0.3).
(1) We say that a A-tree creature t € K is (<r)-complete (for (K, X)) if
(a) for every =<i-increasing chain (¢, : @ < §) C (t) with § < x and
nor(t,] > 0, there is t5 € X(¢) such that (Vo < §)(to =% ts) and
nor[ts] > min{nor(t,] : @ < d},
(B) ift' € E(t), nor[t'] =0, then |pos[t’]| =1 and X(t') = {t'},
() if v € poslt], then there is ¢ € X(¢) such that pos[t’]| = {v} and
nor[t'] = 0.

(2) t € K is said to be exactly (<k)-complete if it is (<x)-complete and
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(®) if t = (ta : @ < k) C X(t) is a strictly <%-increasing chain, then ¢
has no =<4 -upper bound in X(t), but (., pos[ta] # 0.
(3) We say that (K,Y) is A-complete (exactly A-complete, respectively) if
(a) (K,X) is very local, and
(b)x each minimal creature t} is (<)\1J£(U))—comp1ete (exactly (<Am@))-
complete, respectively).
We say that (K, Y) is just (<\)-complete if it satisfies (a) above and
(b)* each minimal creature ¢}, is (<\)-complete.

PROPOSITION B.6.2: Assume that (K,X) is a very local A-tree creating pair
for H, D* is a <A-complete uniform filter on A. Let P be one of the forcing
notions Q{"*°(K, %), Q% (K, X), or Q4°(K, X).

(1) If (K,X) is »-complete, then PP is strategically (<))-complete.

(2) If (K, %) is just (<X)-complete, then P is (<\)-complete.

(3) If (K,X) is exactly A-complete, then P is (<\)-complete.

Proof: (1) Let P € {Q{™°(K,X), Q% (K, X), Q4¢(K,X)} and let r € P. Con-
sider the following strategy st of Complete in the game O} (P,0,r). At stage
j < X of the game, after a sequence ((p;,¢;) : ¢ < j) " (p;) C P has been con-
structed (so p; is the jth inning of Incomplete), she plays the <}-first condition
¢; € P stronger than p; and such that lh(root(g;)) > j + w.

Why is this a winning strategy? Suppose that the players have arrived at a
limit stage § < X of the game, Complete has used st and ((p;, ¢;) : @ < J) is the
result of the game so far. Our aim is to show that the (increasing) sequence
(g; : i < 0) has an upper bound in P. To this end we are going to define a
condition ¢ = (t, : n € T) € P inductively defining (1), and ¢, for o < A,
n € (T)a. First we declare root(T") = [ J,; 5 root(¢;) and we note that

root(T') € m T% and ¢ <Ih(root(T)) < )‘lJrh(root(T))'
i<d
Now we may choose t,o01(1) € TCR?‘OOc(T)[ ] so that .oy € 2(t root(T))

(for all ¢ < ) and nor[t,oeu )] > mm{nor[ : 4 < 4}, and we declare

root(T)]
POS[toot(ry] € T' (thus defining (T')imroot(1))+1)- Next we proceed inductively
in a similar manner: suppose that (T')s has been already defined and it is

t
included in (), _;5 T'%. For each n € (T") choose t, such that
(Vi < 8)(ty, € X(t])) and mnor[t,] > min{nor[t]]:i < d},

and declare pos[t,] C T. (So after this step (T')q+1 is defined.) If & < A is limit
and (T")g has been defined for 5 < «, then we let (T"), consist of all sequences
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n € [15, H(B) such that [ € (T)s whenever lh(root(T')) < 8 < «, and then
we choose t,, (for n € (T'),) like above.

This way we build a condition (t, : 7 € T) € Qj**(K,X), and it is very
straightforward to verify that this condition is actually in P and is stronger
than all ¢; (for i < 6).

(2), (3) Similar. ]

The exact \-completeness may seem to be very strange and/or strong. But
as a matter of fact it is easy to modify any A\-complete A-tree creating pair to
one that is exactly complete (and the respective forcing notions are very close).

Definition B.6.3: Let (K,Y) be a very local A-complete M-tree creating pair for
H. We define the M-exactivity (K< $exN) of (K, %) as follows.
Let n € Uyen [15<a H(B). We let KN n TCR,’;[H] consist of all A-tree

creatures ¢ such that

o nft] =,

e dis[t] = (t¢ : £ < 0), where t =t} is the minimal creature at 7 for (K, ¥),

o< )‘lh(n)v and (< (<6 = j% te&ete # te,

e posft] = pos|ts],

e nor(t] = min{norft¢] : £ < J}.
Then, for #/,t € K™ N TCR)[H] we let ' € 5V (¢) if and only if dis[t] <
dis[t'].

PROPOSITION B.6.4: Assume (K,Y.) is a very local A\-complete \-tree creating
pair. Then (K 2x(N) is a very local exactly A-complete \-tree creating
pair. The minimal creature for it at 7 is t;* such that dis[t;*] = (t}).

Proof: Easy. |

THEOREM B.6.5: Suppose that
(a) (Va < AN)(JH(a)| < Aa), and
(b) (K,X) is a i-complete very local A-tree creating pair for H for some strictly
increasing sequence i = (ji, : & < A) of regular cardinals such that p, < A
(for o < A), and
(¢) D* is a normal filter on .

Then the forcing notion Q%¢¢(K,X) has the strong A-Sacks property

Proof: Let ig < A and p € Q%%°(K,X). Just for notational simplicity we
assume that H(a) € A, for all a < A and lh(root(p)) < ip. We are going to
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describe a strategy for Generic in the game D/S\ad‘s(io,p, (K, Y)). In the
course of the play she will also choose sets ;11 € D* and A-tree creatures t,,.

First Generic picks € TP such that 1h(n) > i and she starts the game with
playing s;, = {n[(io+1)} and qn Nio41) =P ], She also picks 1, € E( ot 1))
such that pos|t,,+1)] = {n[(io + 1)} (remember B.6.1(1)(7)).

Arriving at a successor stage 7 = i+ 1 of the play the players have determined
si,q',p* and Y; so that, in addition to the demands of the game, for each n €
s; N\ we have n < root(q,"?). Now for each € s; N1\ Generic picks
vy € TP strictly extending 7 and she plays

Si+1 =8; U {an(i + 2) ine Si}a qur Mi+2) — (pn)[”n] for UASEIAR H_l)‘

i1
She also fixes a set Y11 € D* of limit ordinals included in ), ., Y %142 (recall
B.5.2(2)) and for i € s; N **1\ she lets t,, € ¥(t7) be such that pos[t,] = {v,}.

Now suppose that the players have arrived to a limit stage § < A of the game,
and assume that 6 ¢ [),_5Yiy1. Generic lets s5 consist of all sequences 7 of
length 6 such that n[(i + 1) € s; whenever iy <i < §. For each n € s} she first

picks a condition 7, stronger than all p for ig < ¢ < § (there is one by

1(i+1)
arguments as in the proof of B.6.2(1)) and then she chooses v, € T strictly

extending 7. Then she plays

ss = s5 U{vyl(d+1):m € s5}, an[(é-i-l) = (7’77)[1/"] for n € s;.

The A-tree creatures t, (for 1 € s3) are chosen as above: t, € X(t)), pos[t,| =

{vn}-

Finally suppose that we are at a limit stage < A of the game and 6 € (1,4 Y;
Let sj be defined as above and for each n € s} let r, be a condition stronger
than all p ((i+1) for do < i < 6 and such that root(r,) = n and nor[t,"] > |J|
(there is one by arguments as in the proof of B.6.2(1) and the choice of the Y;’s).

Then she plays
s§ = s3U U{pos[t;”] 1N E S5} @ = (rn)[l’] for v € pos[t;"], n € s5.

She also lets ¢, = t," € X(t?) (for n € s3).

It should be clear that the strategy described above always tells Generic to
play legal moves (remember 0.3(c)). It should also be clear that if ((s;, ¢, p) :
10 < i < M) is the result of a play of D/S\aCkS(io,p, t1°¢(K, ¥)) in which Generic
uses that strategy, then letting T' = (J{s; : io <i < A} and ¢ = (t, :n € T) we
get a condition in Q¢°(K,X) (as witnessed by A, Y;41) stronger than p and
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forcing that
“(Fp € "N)(Vi € [i0, ) (pl(i + 1) € s:&q)y ;1) € Touee(ics)” W

THEOREM B.6.6: Assume that (Va < \)(|H(a)| < A), and (K, X), D* satisfy
(b), (¢) of B.6.5. Then the forcing notion Q%%°(K, X) has the strong A-bounding

property.

Proof: Similar to B.6.5. [ |

The above two theorems are applicable to forcing notions of the type
tee(K,X) as they may be treated as a special case (under the assumptions
as there):

PROPOSITION B.6.7: Assume that (Vo < A)(|H(«)| < A) and (K, ) is a fi-
complete very local A-tree creating pair for H (for some strictly increasing fi).
Then the forcing notions Qii**(K, %) and Q3°(K, ) are equivalent.

cl

Turning to the case of A-creating pairs (and forcing notions of the form
QI (K,X)), we have easy ways to ensure they are suitably complete (parallel
to B.6.1, B.6.2).

Definition B.6.8:

(1) For a A-creating pair (K,X) and ¢t € K we define when ¢ is (<k)-complete
and exactly (<k)-complete like in B.6.1(1,2) (but with val replacing
pos).

(2) If (K,%) is very local, then we say that it is \-complete (exactly -
complete, respectively) if each minimal creature t¥ is (<A})-complete
(exactly (<A, )-complete, respectively).

PROPOSITION B.6.9: Assume that (K,X) is a very local A\-creating pair for
H, D* is a normal filter on \. Let P be either the forcing notion Q3 (K,X) or
Q- (K, %),

(1) If (K, X) is A-complete, then P is strategically (<\)-complete.

(2) If (K,X) is exactly A-complete, then P is (<\)-complete.

More results on strong bounding properties for forcing notions determined by
A-creating pairs will be presented in [14].

B.7. GETTING FUZZY PROPERNESS. In this section we show that the forcing
notions with trees and creatures may fit the fuzzy proper framework. Note that
even though the forcing notions covered by Theorems B.7.2 and B.7.3 below are
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also covered by Theorem B.6.6, the results here still have value if we want to
iterate that forcing notions with ones which do not have the strong A-bounding
property. Here we assume the following:

CONTEXT B.7.1:
(1) A\, A are as in 0.3,
(2) M, A=H(A*),W,D are as in A.3.1,
(3) i = (pa : & < A) is an incresing sequence of cardinals cofinal in A and
such that o < po for o < A.

THEOREM B.7.2: Let D* be a normal filter on )\ such that for some Sy € D*
we have A\ Sy € D. Assume that (K,X) is an exactly fi-complete very local
A-tree creating pair for H, and |H(«)| < A for each a < X. Then the forcing
notion Q%°(K, Y) is strongly fuzzy proper over quasi D-diamonds for W.

Proof: By B.6.2 we know that Q%%°(K,X) is (<\)-complete.

Let |, Y be the trivial M-base defined as in the proof A.3.9 (but for P =
QYee(K,¥)). We are going to show that for this A-base and for ¢ = (\, K, )
the condition A.3.6(2)((®)") holds. So assume that N, h, F = (Fs : § € S) and
7= {qs : 6 € S limit &z € Xj) are as there and p € Q°(K,X)NN. Note that
Xs = {0} (for all relevant §) and thus we may think that § = (g5 : § € S limit).

Let 7 = (Z¢ : £ < \) list all open dense subsets of Q%¢¢(K,Y) from N.
For i < X let & be such that Z¢, consist of conditions p € Q%%°(K, %) with
Ih(root(p)) > i, and let E be a club of A such that

(V6 € E)(Vi < §)(0 is limit and & < 9).

By induction on o < A choose conditions p, € Q%¢°(K, X)NN and sets Y, € D*
such that

(1) po = p, root(pa) = root(p), and p, < pg and Yz C Y, C Sy for a < § < A,
) Y, witnesses p, € Q°(K, X) (see B.5.2(2)),
iii) for every a < 8 < X\ and v € (TP~), we have v € TP? and tP> = .7,

) if @ < X is a successor, £ < a and 7 € (TP*),, then for some v € (TP=)l"]
we have: (po)! € T and (Vp € TP )(n < p<v = nor[th]| = 0),
(v) if 6 € Nycs Ya is a limit ordinal, then ¢ € Yj for every 8 > 0,
(vi) if 6 € SN E\ Sp and (ho Fs(i) : i < 0) is an increasing Z-exact sequence

of members of N N Q%°(K, X) such that

(Vo < 8)(3i < 8)(pa < ho F(i)),



Vol. 159, 2007 SHEVA-SHEVA-SHEVA: LARGE CREATURES 165

and n € (TPs)s is such that every ho Fj(i) is compatible with (ps), then
(pé)["]] <gqs = (pé)[rOOt(QS)] and

(Vp € TP)(n < p < root(gs) = nor[th’] = 0).

(Note that there is at most one 7 as above; remember the choice of E.)
It should be clear that the inductive construction of the p,’s and Y, ’s is possible
(for (v) remember ¢ < ps; note also that there is no collision between (v) and
(vi) because Y, C Sp). Now letting root(r) = root(p), T" = |Jycr(T7)a,
tr = ;""" we get a condition r € QU%¢(K,Y) (as witnessed by A,y Ya).
Also note that r is stronger than all p,’s.

CLAIM B.7.2.1: The condition r is (R',Q¥)-fuzzy generic for q.

Proof of the Claim: First note that the condition r is (N, Q%%°(K, X))-generic
by clause (iv) above. Therefore we may use A.3.8(3), and it is enough that we
show that Generic has a strategy in the game Df\uzzy(r, N,Z,h,Q%(K,X), F,q)
which guarantees that the result (r;, C; : ¢ < A) of the play satisfies A.3.4(5)(8).
Let us describe such a strategy.

First, for a < A let {,, < A be such that

(Vg € Z¢, ) ( either po < q or pa, g are incompatible),

andlet B/ = {6 € E: (Va < §)(Ca < 9)} (it is a club of A).
Now, suppose that during a play of Df;zzy(r, N,Z,h,Q%(K,X), F,q) the
players have arrived at stage ¢ € S having constructed a sequence (r;, C; : j < i).

If either ¢ is a successor ordinal or ¢ ¢ [(._,C;, then the Generic player

j<i
plays the <%-first condition r; € Qp°(K,X) such that (Vj < 4)(r; < ;) and
Ih(root(r;)) > i, and the set C; = E’ \ (Sp U lh(root(r;))).

If i € ;; Cj is a limit ordinal (so also i € E"\ Sp), then Generic asks

(¥) is (ho Fi(a) : a < i) an increasing Z-exact sequence such that
(V) < 1) (Ba < i)(ps < ho Fifa))?

If the answer to () is “no”, then she plays like at the successor stage.

(Note that if the answer to (%) is “no” and (h o F;(a) : a < i) is increasing
T-exact, then for some j < i and a < i the conditions p; and h o F;(«) are
incompatible, and hence r; and h o F;(«) are incompatible.)

If the answer to (x) is “yes”, then Generic looks at clause (vi) (of the choice of
pa’s) and n = {J;, root(r;) (note that Ih(n) = ). If (p;)!" is incompatible with
some h o F;(a), a < i, then she plays C;, r; as in the successor case.
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(Note that then r;, h o F;(«) are incompatible.)
Otherwise n < root(g;) € TP, ¢ = (p;)°°t@)]l and (Vp € TPi)(n < p <
root(gi) = [pos[thi]| = 1). Therefore, root(¢;) € T and ¢; < (r)lreot(al (for
each j < 7). So Generic can put C; = E’\ i and the <}-first condition r;
stronger than all r; (for j < %) and g;.

It follows immediately from the comments stated during the description of
the strategy that every play according to it satisfies A.3.4(5)(5), finishing the
proof of the claim. |

This finish the proof of Theorem B.7.2. |

THEOREM B.7.3: Let D* be a normal filter on )\ such that for some Sy € D*
we have A\ \ So € D. Assume that (K,Y) is an exactly \-complete very local
A-creating pair for H, |H(a)| < X for each o < X. Then the forcing notion
Q1. (K, %) is strongly fuzzy proper over quasi D-diamonds for W.

Proof: The proof is the same as the proof of Theorem B.7.2. |

THEOREM B.7.4: Suppose that (K,Y) is an exactly fi-complete very local \-
tree creating pair for H, (Vo < X)(|H(a)| < A), and D* is a normal filter on .
Then the forcing notion Q%¢(K, X)) is fuzzy proper for W.

Proof:  The proof closely follows the lines of that of B.7.2. Let D be a normal
filter on A such that there is a D-diamond.

Just only to simplify somewhat the definition of a A-base which we will use, let
us assume that (Js_, [[,<5 H(a) C a for every a € W. Now we let R = R(K, X)
consist of all triples (p, d,7) such that § < A\, € [],.s H(e) and p € Q3°(K, %)
satisfies 77 <t root(p). Next, for a € W let 9, = Do (K, X): A — [a]<* be given
by Da(0) = [[,<s H(a) C a (for § < A). It should be clear that (R,9) is a
A-base for Qi°(K, ) over W.

We claim that (R,9) and ¢ = (\,H, K,Y) witness the condition (®) of
A.3.6(1). To thisend, let N,h, F = (F5s: § € S) and § = (gs,, : 6 € S limit &z €
Xs) be as in A.3.6(1)(®), p € QB(K,S)NN. Let T = (Z¢ : £ < A) list all open
dense subsets of Q3¢°(K, %) from N. For i < A let & be such that Z¢, consist of
conditions p € Q¢°(K, ) with lh(root(p)) > 4, and let E be a club of A such
that

(Vo € E) (Vi < §)(0 is limit and & < 9).

By induction on o < A, like in B.7.2 (but note the change in (vi) below!), we
choose conditions p, € Q%(K,¥) N N and sets Y,, € D* such that
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(1) po = p, root(ps) = root(p), and p, < pg and Yz C Y, for a < B < A,
(ii) Y, witnesses p, € Q¥°(K,X),
)
)

(iii) for every a < 3 < X and v € (TP=), we have v € TP? and tP~ = t1°,

(iv) if o < X is a successor ordinal and 5 € (TP*),, then for some v € (TP )l
we have: (po)¥! € Ne<aZe and (Vp € TP*)(n < p < v = nor[the] = 0),
(v) if 6 € N,cs Yo is a limit ordinal, then § € Yj for every 8 > 0,

(vi) if 0 € SNE, (hoF5(i) : i < 0) is increasing Z-exact, n = |J, 5 root(hoF5(i))
and lh(n) = 4§, and (Va < 0)(3i < 0)(pa < ho Fs(i)),

then (n € TP and) for every v € pos[th*] N[, 5 pos[tZOF‘s(i)] we have

(5)) < g5, = (ps) 8@ )] and
(Vp € TP)(v < p <t root(gs,,) = nor[th?] = 0).

(Note that, in the situation as in (vi), Xs = (), pos[tZOFS(i)].)
Plainly, the inductive construction of the p,’s and Y,’s is possible (for (v)
remember § < pus). Now letting root(r) = root(p), T" = Uycr(TP*)as t), =

v
T we get a condition r € QU¢¢(K, ¥) stronger than all p,’s.

CLAIM B.7.4.1: The condition r is (R, ))-fuzzy generic for q.

Proof of the Claim: It is very much like the proof of claim B.7.2.1. We note
that r is (N, Q% (K, X))-generic (by clause (iv)), and therefore it is enough to
show that Generic has a strategy in the game Df\uzzy(r, N,Z,h,Q%(K,X), F,q)
which guarantees that the result (r;, C; : i < A) of the play satisfies A.3.4(5)(5)
(remember A.3.8(3)). Let us describe such a strategy. First, for @ < A let
Ca < A be such that

(Vg € Z¢, ) ( either po < g or pa, ¢ are incompatible),

andlet B/ = {6 € E: (Va < §)(Ca < 9)} (it is a club of A).

Now, suppose that during a play of Dguzzy(r, N,Z,h,Q%(K,X), F,q) the
players have arrived at stage ¢ € S having constructed a sequence (r;, C; : j < i).
<i Cj, then Generic plays the <{-first
condition r; € Q% (K, X) such that (Vj < 4)(r; <r;) and lh(root(r;)) > ¢ and
C; = E’\ Ih(root(r;)).

IfieN;. 1

(%) is (ho Fi(a) : @ < i) an increasing Z-exact sequence such that

If either i is a successor ordinal or i ¢

C; C E’ is a limit ordinal, then Generic asks

(Va <4)(35 <i)(ho Fi(a) <1j)?
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If the answer to (%) is “no”, then she plays like at the successor stage.

If the answer to (%) is “yes”, then Generic takes = |J,_, root(r;) and she notes

j<i
that Ih(n) = & (by the choice of C}’s at successor stages) and n = J;_5root(h o

Fs(i)). Also, by the exactness and the choice of E’, we have
(%] < §)(3a < i)(p; < ho Fi(a).

So now Generic looks at clause (vi) of the choice of p,’s. She picks (say, the
< Alrst) v e ), pos[t;’] C Nj<i pos[tZOFi(a)] and notices that (by (vi)) v <
root(gi,) € TP, g, = (pi)Fot @)l and (Vp € TP)(v < p < root(gq;,) =
Ipos[t?i]| = 1). Therefore, root(g; ) € T and g;,, < (T77)Fote.2)] (for each
J <'i). So Generic can play C; = E’\ i and the <}-first condition r; stronger
than all r; (for j < i) and ¢; .

Easily, the strategy described above has the required property, and the proof
is completed. |

This ends the proof of theorem B.7.4. |

PRrOBLEM B.7.5: Unlike the case of B.7.2, it is not clear how the proof of B.7.4
can be modified to get the parallel result for non-tree case. So, assuming that
A,W,H and D* are as in B.7.4 and (K,¥) is an exactly A-complete very local
A-creating pair for H, is the forcing notion Q%,. (K, X) fuzzy proper for W7

B.8. MORE EXAMPLES AND APPLICATIONS. Here we are going to present
some direct applications of the methods developed in this paper. Though we do
keep our basic assumptions from 0.3, we are going to introduce more parameters,
so let us fully state the context we are working in now.

CONTEXT B.8.1:
(a) A is a strongly inaccessible cardinal, 2* = AT, and A" = At and
M) = {ta :a <A, A=Ay :a < and & = (ko : @ < \) are strictly
increasing sequences of uncountable regular cardinals, each cofinal in A,
(c) for each a < A,
o o< fig <t < Ao < Ka,
0 Tlseahs < A and (% < A)(€* < Ao),
(d) A=Hoa(A\), \* > X and W C [A]* are as in A.3.1,
(e) D is a normal filter on A such that there is a D-diamond.

Let us recall some notions related to cardinal characteristics of A-reals.
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Definition B.8.2:
(1) Let S be the family of all sequences a = (an : a < A) such that a, €
[A]<He (for all & < A). We define

(i) = min{[Y] : ¥ C Sp&(Vf € *N)(Ta € V) (Va < N)(f () € aa)},
cq (i) =min{|Y|: Y C Sp&
(Vfe*N@aecY)({a<: fla) €an} € (D))},

and also
ea(fi) = min{|G| :G C ] pa and
a<
(Vf € I #a)(3Bg € 9)({a < A: f(a) # g(a)} € Dy},
a<

(2) For an ideal J of subsets of a set X, the covering number cov(7) of J
is
cov(J)=min{|Y|: Y C J&UY = X}.

PROPOSITION B.8.3: It is consistent that c()\) < ec(fi).

Proof:  Let Ho(a) = po (for o < A) and let Ky consist of all A-tree creatures
t € TCR?[Hy| such that:

e dis[t] € pny) + 1,

o if dis[t] = pun(y)), then pos[t] = {n[t] ™ (£) : & < punypg)} and norft] =

Hn(n[t])s

o if dis[t] < punyp), then pos|t] = {n[t](dis[t])} and nor[t] = 0.
Let X be a local tree-composition operation on Ky (so its domain consists of
singletons only) such that

o if disft] < Hin(n[]), then So(t) = {t},

e if dis[t] = pun(yp), then Xo(t) = {t' € Ko : n[t'] = n[t]}.

It should be clear that (K, Xo) is a very local exactly A\-complete tree creating
pair. The forcing notion Q%ie(KO,EO) has the strong A-Sacks property (by
B.6.5). Let W be the canonical Q3%°(Ko, Xo)-name for the generic function in
[t 50

D ”_Q%T(KO,EU) “root(p) < W7.

Then we have

IFagee (ac0.30) “(Vf € [T ranV)Ha <X:W(a) = f(a)} € (DA)T)".

a<A
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Now let P be the limit of a A-support iteration, At in length, of the forcing
notions Q3%°(Ko, Xo). Then, by A.2.4 + A.1.10 + A.1.5 + A.3.10,
e Pis (<\)-complete, A-proper and satisfies the A™"-cc, and it has a dense
subset of size AT, thus forcing with P does not collapse cardinals,
e P has the \-Sacks property, it is weakly fuzzy proper for W,
o bp¥2d =227 = ATF — ¢ () and c(X) = AT7

Remark B.8.4: The forcing Q%ie(KO, o) is a “bounded relative” of Dy from
[16, 4.10] (remember B.6.7). It is also a generalization of the forcing notions
Dy from [13].

PROPOSITION B.8.5: It is consistent that ¢(\) < c¢;(it) = ("), where pt =
(ud :a < A).

Proof: Let Hi(a) = pf (for a < \) and let K consist of all A-tree creatures
t € TCR[H;] such that:
e dis[t] C “ﬁ:(n[t])’ either |dis[t]] = 1 or dis[t] is a club of uf‘h(n[t]),
e pos(t] = {n[t](¢) : £ € dist]},
e if [dis[t]| = 1 then nor[t] = 0, if |dis[t]| > 1 then nor[t] = ) -
Let X} be a local tree-composition operation on K such that

¥(t) ={t' € K} : nt'] = n[t|&dis[t'] C dis]t]}.

Then (K{,3) is a very local fi-complete A-tree creating pair. Let (K1,%1) be
the fi-exactivity of (K7,%}) (see B.6.3); thus (K7,%;) is a very local exactly
[-complete A-tree creating pair. The forcing notion Q%‘ie(K 1, 21) is A-complete
fuzzy proper for W and it has the strong A-Sacks property. Also, letting W
be the canonical name for the generic function in ], ut (e, p IFQ%E;(Kl,El)
“root(p) < W”), we have

IFagee (6,2 “(Va € Spr N V)({ar < A : W(a) ¢ a0)} € DA™

Let P be the limit of a A-support iteration, A* in length, of the forcing notions
5°°(K1,%1). Then (by A.2.4 + A.1.10 + A.1.5 + A.3.10) we have:
e Pis (<\)-complete, A-proper and satisfies the A™T-cc, and it has a dense
subset of size AT, thus forcing with P does not collapse cardinals,
e P has the \-Sacks property, it is weakly fuzzy proper for W,
o lFpi2d = 22" = \+F = cy(pT) and c(A) =At” |
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Remark B.8.6: The result in B.8.5 is of interest as it shows that the A-versions
of cardinal characteristics of the reals may behave totally differently from their
“ancestors”. Recall that if for an increasing function f € “w we let S7 consist
of all sequences @ = {(a, : n < w) with a, € [W]</M+1 (for n < w), then

min{|Y|: Y C S7&(Vh € “w)(Ja € Y)(Vn < w)(h(n) € a,)}
=min{|Y|: Y C S9&(Vh € “w)(3a € Y)(Vn < w)(h(n) € a,)}

for any increasing f,g € “w
The A-tree creating pair (K7, 1) may be treated (in some sense) as a special

case of the A-tree creating pairs (K (A), 3(A)) from B.8.10 below.

Definition B.8.7: Let A be a family of subsets of « such that xk € A.
(1) A game 0*(A, ) of two players, I and II, is defined as follows. A play lasts
p moves, in the a'® move a set A, € A is chosen, and player I chooses A,
a<p Aa 7é 0.
(2) The family A is a p-category prebase on & if player II has a winning
strategy in the game O*(A, ) and (VA € A)(V¢ < k)(3IB € A)(B C
AN{¢}).

(3) A set X C k is A-presmall if

for even a’s. In the end player II wins if

(VA€ A)(3B € A)(BC A\ X).

Of course, every put-complete uniform filter D* on  is a u-category base on
% and then a set is D-presmall if and only if its complement is in D*.

Definition B.8.8:
(1) A M-smallness base on & is a sequence A = (A, : a < \) such that
each A, is a A\,-category prebase on Kq.
Let A be a A-smallness base on &.
(2) Let T C Uyer [15<x ka be a complete A-tree with max(T') = () and D*
be a filter on A. We say that
o T is A-smallif for every n € (T)qa, o < A, the set {& < ko : (&) €
T} is An-presmall;
o T is (D*, A)-small if

{a < \: for every n € (T), the set
{€ < kq:n(§) €T} is Ay-presmall} € D*.

(3) Let Jx(A) consist of all subsets X of [, _y xa such that X C|J
for some A-small trees 7. C |, ., [I5<xBa (for e <A).

e<A hm)\(Ta)
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J=(D*, A) is defined similarly, replacing “A-small” by “(D*, A)-small”.

PROPOSITION B.8.9: Let A be a A\-smallness base on k. Then both Jx(A)
and Jz(D*, A) are proper A\*-complete ideals of subsets of Ha</\ Koy, Ji (.%I) -
J=(D*, A). They contain singletons and X < cov(Jx(D*, A)) < cov(Tz(A)).

PROPOSITION B.8.10: Let A be a A-smallness base on & and D* be a normal
filter on \. It is consistent that cov(Jx(D*, A)) > AT.

Proof: First we define a M-tree creating pair (K(A),2(A)) = (K,¥). For
a < Alet H(a) = k4 and let sty be a winning strategy of player II in the game
0*(Aa, Aa)-
K consists of all A-tree creatures t € TCR*H] such that letting a = Ih(n[t]):
e either dis[t] = (6, (AL : i < 4)), where § < A\, and (Al : i < 4) is (an
initial segment of) a play of 0*(Aa, A\s) in which player IT uses strategy
Sta,
or dis[t] = (&) for some & < Kq;
o if dis[t] = (&), then pos[t] = {n[t]™(¢)} and nor[t] = 0;
o if dis[t] = (0, (Al : i < 4)), then pos[t] = {n[t] (&) : £ € ;.5 Ai} and
nor[t] = a+ 1. (If § = 0 then we stipulate pos[t] = {n[t] ¢ : € < Ka}.)
The domain of the tree composition operation X consists of singletons only,
and
if nor[t] = 0 then X(t) = {t},
if nor[t] > 0, a = lh(n[t]) and dis[t] = (4, (Al
those t’ € K N TCR,’; [H] for which:
e either nor[t'] = 0 and pos[t'] C poslt],
e or nor[t'] > 0, dis[t'] = (&, (A : i < &) and (AL :i < &) < (AV i< ).

14 <)), then X(t) consists of

Cramv B.8.10.1: (K,YX) is an exactly A-complete very local tree creating pair
for H. Hence the forcing notion Q'%°(K,X) is fuzzy proper for W.
Proof of the Claim: The proof is straightforward. |

We finish the proof of the proposition in a standard way: we force with A-
support iteration, AT+ in length, of the forcing notion Q%¢¢(K (A), X(A)). [ |
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