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ABSTRACT

We develop the theory of the forcing with trees and creatures for an

inaccessible λ continuing Ros lanowski and Shelah [15], [17]. To make a

real use of these forcing notions (that is to iterate them without collapsing

cardinals) we need suitable iteration theorems, and those are proved as

well. (In this aspect we continue Ros lanowski and Shelah [16] and Shelah

[20], [21].)
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0. Introduction

The present paper has two themes.

The first is related to the quest for the right generalization of properness to

higher cardinals (that is, for a property of forcing notions that would play in

iterations with uncountable supports similar role to that of standard properness

in CS iterations). The evidence that there is no straightforward generalization

of properness to larger cardinals was given already in Shelah [18] (see [19, Ap-

pendix 3.6(2)]). Substantial progress has been achieved in Shelah [20], [21], but

the properties there were tailored for generalizing the case no new reals of [19,

Ch. V]. Then Ros lanowski and Shelah [16] gave an iterable condition for not

collapsing λ+ in λ-support iterations of (<λ)-complete forcing notions (with

possibly adding subsets of λ) and later Eisworth [6] gave another property pre-

served in λ-support iterations (and implying that λ+ is not collapsed). At the

moment it is not clear if the two properties (the one of [16] and that of [6])

are equivalent, though they have similar flavour. However, the existing iterable

properties still do not cover many examples of natural forcing notions, specially

those which come naturally in the context of λ-reals. This brings us to the

second theme: developing the forcing for λ-reals.

A number of cardinal characteristics related to the Baire space ωω, the Cantor

space ω2 and/or the combinatorial structure of [ω]ω can be extended to the

spaces λλ, λ2 and [λ]λ for any infinite cardinal λ. Following the tradition of Set

Theory of the Reals we may call cardinal numbers defined this way for λλ (and

related spaces) cardinal characteristics of λ-reals. The menagerie of those

characteristics seems to be much larger than the one for the continuum. But to

decide if the various definitions lead to different (and interesting) cardinals we

need a well developed forcing technology.

There has been a serious interest in cardinal characteristics of the λ-reals

in literature. For example, Cummings and Shelah [5] investigated the natural

generalizations bλ, dλ of the unbounded number and the dominating number,

respectively, giving simple constraints on the triple of cardinals (bλ, dλ, 2
λ) and

proving that any triple of cardinals obeying these constraints can be realized.
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In a somewhat parallel work [22], Shelah and Spasojevič studied bλ and the

generalization tλ of the tower number. Zapletal [23] investigated the splitting

number sλ — here the situation is really complicated as the inequality sλ > λ+

needs large cardinals. One of the sources of interest in characteristics of the

λ-reals is their relevance for our understanding of the club filter on λ (or the

dual ideal of non-stationary subsets of λ) — see, e.g., Balcar and Simon [2,

§5], Landver [10], Matet and Pawlikowski [11], Matet, Ros lanowski and Shelah

[12]. First steps toward developing forcing for λ-reals have been done long time

ago: in 1980 Kanamori [9] presented a systematic treatment of the λ-perfect–set

forcing in products and iterations. Brown [3], [4] discussed the λ-superperfect

forcing and other tree-like forcing notions.

Our aim in this paper is to provide tools for building forcing notions rel-

evant for λ-reals (continuing in this Ros lanowski and Shelah [15], [17]) and

give suitable iteration theorems (thus continuing Ros lanowski and Shelah [16]).

However, we restrict our attention to the case when λ is a strongly inaccessible

uncountable cardinal (after all, ℵ0 is inaccessible), see 0.3 below.

The structure of the paper is as follows. It is divided into two parts, first one

presents iteration theorems, the second one gives examples and applications. In

Section A.1 we present some basic notions and methods relevant for iterating λ-

complete forcing notions. The next section, A.2, gives preservation of λ-analogue

of the Sacks property (in Theorem A.2.4) as well as preservation of being λλ-

bounding (in Theorem A.2.7). Section A.3 introduces fuzzy properness, a

more complicated variant of properness over semi-diamonds from [16]. Of

course, we prove a suitable iteration theorem (see Theorem A.3.10). Then we

give examples for the properties discussed in Part A. We start with showing

that a forcing notion useful for uniformization is fuzzy proper (in Section B.4),

and then we turn to developing forcing notions built with the use of trees

and creatures. In Section B.5 we set the terminology and notation, and in

the next section we discuss when the resulting forcing notions have the two

bounding properties discussed in §A.2. Section B.7 shows how our methods

result in fuzzy proper forcing notions, and the last section introduces some new

characteristics of the λ-reals.
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Notation: Our notation is rather standard and compatible with that of clas-

sical textbooks (like Jech [8]). In forcing we keep the older convention that

a stronger condition is the larger one. Our main conventions are listed

below.

Notation 0.1:

(1) For a forcing notion P, ΓP stands for the canonical P-name for the generic

filter in P. With this one exception, all P-names for objects in the ex-

tension via P will be denoted with a tilde below the letter (e.g., τ
˜

, X
˜

).

The weakest element of P will be denoted by ∅P (and we will always as-

sume that there is one, and that there is no other condition equivalent to

it). We will also assume that all forcing notions under considerations are

atomless.

By “λ-support iterations” we mean iterations in which domains of con-

ditions are of size ≤ λ. However, we will pretend that conditions in a

λ-support iteration Q̄ = 〈Pζ ,Q
˜

ζ : ζ < ζ∗〉 are total functions on ζ∗ and

for p ∈ lim(Q̄) and α ∈ ζ∗ \ Dom(p) we will let p(α) = ∅
˜

Q
˜

α
.

(2) For a filter D on λ, the family of all D-positive subsets of λ is called D+.

(So A ∈ D+ if and only if A ⊆ λ and A ∩B 6= ∅ for all B ∈ D.)

The club filter of λ is denoted by Dλ.

(3) Ordinal numbers will be denoted by the lower case initial letters of the

Greek alphabet (α, β, γ, δ, . . .) and also by i, j (with possible sub- and

superscripts).

Cardinal numbers will be called θ, κ, λ, µ (with possible sub- and super-

scripts); λ is a fixed inaccessible cardinal (see 0.3).

(4) By χ we will denote a sufficiently large regular cardinal; H(χ) is the

family of all sets hereditarily of size less than χ. Moreover, we fix a well

ordering <∗χ of H(χ).

(5) For regular cardinals λ < λ∗, H<λ(λ∗) is the collection of all sets x which

are hereditarily of size < λ relatively to λ∗, i.e., such that |Tcord(x)| < λ

and Tcord(x) ∩ Ord ⊆ λ∗. Recall that Tcord(x), the hereditary closure

relative to the ordinals, is defined by induction on rank(x) = γ as follows:

• if γ = 0 or x is an ordinal, then Tcord(x) = ∅,
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• if γ > 0 and x is not an ordinal, then

Tcord(x) =
⋃

{Tcord(y) : y ∈ x} ∪ x.

(6) A bar above a letter denotes that the object considered is a sequence;

usually X̄ will be 〈Xi : i < ζ〉, where ζ is the length lh(X̄) of X̄. Sometimes

our sequences will be indexed by a set of ordinals, say S ⊆ λ, and then X̄

will typically be 〈Xδ : δ ∈ S〉.

But also, η, ν and ρ (with possible sub- and superscripts) will denote

sequences (nodes in quasi trees).

For two sequences η, ν we write ν ⊳ η whenever ν is a proper initial

segment of η, and ν E η when either ν ⊳ η or ν = η.

(7) We will consider several games of two players. One player will be called

Generic or Complete or just I player, and we will refer to this player

as “she”. Her opponent will be called Antigeneric or Incomplete or

just II player and will be referred to as “he”.

Definition 0.2:

(1) A λ-quasi tree is a set T of sequences of length <λ with the ⊳-smallest

element denoted by root(T ).

(2) A λ-quasi tree T is a λ-tree if it is closed under initial segments longer

then lh(root(T )).

(3) A λ-quasi tree is complete if the union of any ⊳-increasing sequence of

length less than λ of members of T is in T .

(4) For a λ-quasi tree T and η ∈ T we define the successors of η in T ,

maximal points of T , the restriction of T to η, and the height of

T by:

succT (η) = {ν ∈ T : η ⊳ ν&¬(∃ρ ∈ T )(η ⊳ ρ ⊳ ν)},

max(T ) = {ν ∈ T : there is no ρ ∈ T such that ν ⊳ ρ},

T [η] = {ν ∈ T : η E ν}, and ht(T ) = sup{lh(η) : η ∈ T }.

We put T̂ = T \ max(T ).

(5) For δ < λ and a λ-quasi tree T we let

(T )δ = {η ∈ T : lh(η) = δ} and (T )<δ = {η ∈ T : lh(η) < δ}.

The set of all limit λ-branches through T is

limλ(T )
def
= {η : η is a λ-sequence and (∀β < λ)(∃α > β)(η↾α ∈ T )}.
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(6) A subset F of a λ-quasi tree T is a front of T if no two distinct members

of F are ⊳-comparable and

(∀η ∈ limλ(T ) ∪ max(T ))(∃α < λ)(η↾α ∈ F ).

Note that if T is a complete λ-quasi tree of height < λ, then max(T ) is a front

of T and every ⊳-increasing sequence of members of T has a ⊳-upper bound in

max(T ).

In the present paper we assume the following.

Context 0.3:

(a) λ is a strongly inaccessible cardinal,

(b) λ̄ = 〈λα : α < λ〉 is a strictly increasing sequence of uncountable regular

cardinals, supα<λ λα = λ,

(c) for each α < λ,

∏

β<α

λβ < λα and (∀ξ < λα)(|ξ|α < λα).

A. Iteration theorems for λ-support iterations

A.1. Iterations of complete forcing notions and trees of condi-

tions. In this section we recall some basic definitions and facts concerning

complete forcing notions and λ-support iterations.

Definition A.1.1: Let P be a forcing notion.

(1) For a condition r ∈ P and a set S ⊆ λ, let aλ
0 (P, S, r) be the following

game of two players, Complete and Incomplete:

The game lasts at most λ moves and during a play the players
construct a sequence 〈(pi, qi) : i < λ〉 of pairs of conditions from
P in such a way that (∀j < i < λ)(r ≤ pj ≤ qj ≤ pi) and at the
stage i < λ of the game: if i ∈ S, then Complete chooses pi and
Incomplete chooses qi, and if i /∈ S, then Incomplete chooses pi

and Complete chooses qi.

Complete wins if and only if for every i < λ there are legal moves for both

players.

(2) We say that the forcing notion P is (λ, S)-strategically complete if

Complete has a winning strategy in the game aλ
0 (P, S, r) for each con-

dition r ∈ P. We say that P is strategically (<λ)-complete if it is

(λ, ∅)-strategically complete.
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(3) We say that P is (<λ)-complete if every ≤P-increasing chain of length

less than λ has an upper bound in P.

(4) Let N ≺ (H(χ),∈, <∗χ) be a model such that <λN ⊆ N , |N | = λ and

P ∈ N . We say that a condition p ∈ P is (N,P)-generic in the standard

sense (or just: (N,P)-generic) if for every P-name τ
˜
∈ N for an ordinal

we have p  “τ
˜
∈ N”.

(5) P is λ-proper in the standard sense (or just: λ-proper) if there is

x ∈ H(χ) such that for every model N ≺ (H(χ),∈, <∗χ) satisfying

<λN ⊆ N, |N | = λ and P, x ∈ N,

and every condition q ∈ N ∩ P there is an (N,P)-generic condition p ∈ P

stronger than q.

Remark A.1.2:

(1) Note that if P is strategically (λ, λ)-complete and D is a proper normal

filter on λ, then in VP the normal filter on λ generated by D is also proper.

(Abusing notation, we may call this filter also by D.)

(2) On strategic completeness (and variants) see [20, §A.1]; below we recall

one result from there.

(3) As the referee pointed out, the idea of A.1.1(1) goes back to Foreman [7]

where the extreme cases S = ∅, λ were considered.

Proposition A.1.3 (See [20, Proposition A.1.2]): Suppose P is a forcing no-

tion, S ⊆ λ.

(1) If P is (<λ)-complete, then it is (λ, S)-strategically complete.

(2) If S′ ⊆ S and P is (λ, S′)-strategically complete, then it is (λ, S)-strategi-

cally complete.

(3) If Q is (λ, S)-strategically complete, then the forcing with P does not add

new sequences of ordinals of length < λ.

Thus the strategic (<λ)-completeness implies (λ, S)-strategic completeness

for any S ⊆ λ. Also, (λ, λ)-strategic completeness is the weakest among those

properties.

Proposition A.1.4: Suppose that P is a strategically (<λ)-complete (atom-

less) forcing notion, α∗ < λ and qα ∈ P (for α < α∗). Then there are conditions

pα ∈ P (for α < α∗) such that qα ≤ pα and for distinct α, α′ < α∗ the conditions

pα, pα′ are incompatible.

Proof: For α < α∗ let stα be the winning strategy of Complete in the game

aλ
0 (P, ∅, qα). By induction on i < α∗ we define conditions qi

α, p
i
α as follows:
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p0
0 = q0, q00 is the answer of Complete to 〈p0

0〉 according to st0, q0α = p0
α = qα

for α > 0.

Suppose that conditions pj
α, q

j
α have been defined for j < i, α < α∗ (where

i < α∗) so that

(α) (∀α < α′ < i)(qα′

α , qα′

α′ are incompatible ),

(β) for each α < i, 〈(pj
α, q

j
α) : α ≤ j < i〉 is a play of aλ

0 (P, ∅, qα) in which

Complete uses the strategy stα, and

(γ) pj
α = qj

α = qα for α ≥ i > j.

For α < i let rα be a condition stronger than all qj
α for j < i (there is one by

(β)). If every rα (for α < i) is incompatible with qi, then we let pi
α = rα for

α < i, pi
α = qα for α ≥ i. Otherwise, let α0 < i be the first such that rα0 , qi

are compatible. Then we may pick two incompatible conditions pi
α0
, pi

i above

both rα0 and qi. Next we let pi
α = rα for α < i, α 6= α0 and pi

α = qα for α > i.

Finally, for α ≤ i, qi
α is defined as the answer of Complete according to stα to

〈(pj
α, q

j
α) : j < i〉⌢〈pi

α〉, and qi
α = qα for α > i.

After the inductive definition is carried out we may pick upper bounds pα

to 〈qj
α : j < α∗〉 (for α < α∗; exist by (β)). The conditions pα are pairwise

incompatible by (α), so we are done.

Both completeness and strategic completeness are preserved in iterations:

Proposition A.1.5: Suppose that 〈Pα,Q
˜

α : α < ζ∗〉 is a λ-support iteration

such that for each α < ζ∗

Pα
“Q

˜
α is (<λ)-complete.”

Then the forcing Pζ∗ is (<λ)-complete.

Proposition A.1.6: Suppose Q̄ = 〈Pε,Q
˜

ε : ε < γ〉 is a λ-support iteration

and for each ε < γ

Pε
“Q

˜
ε is strategically (<λ)-complete”.

Then:

(a) Pγ is strategically (<λ)-complete.

(b) Moreover, for each ε ≤ γ and r ∈ Pε there is a winning strategy st(ε, r) of

Complete in the game aλ
0 (Pε, ∅, r) such that, whenever ε0 < ε1 ≤ γ and

r ∈ Pε1 , we have:

(i) if 〈(pi, qi) : i < λ〉 is a play of aλ
0 (Pε0 , ∅, r↾ε0) in which Complete

follows the strategy st(ε0, r↾ε0),
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then 〈(pi
⌢r↾[ε0, ε1), qi

⌢r↾[ε0, ε1)) : i < λ〉 is a play of aλ
0 (Pε1 , ∅, r)

in which Complete uses st(ε1, r);

(ii) if 〈(pi, qi) : i < λ〉 is a play of aλ
0 (Pε1 , ∅, r) in which Complete plays

according to the strategy st(ε1, r),

then 〈(pi↾ε0, qi↾ε0) : i < λ〉 is a play of aλ
0 (Pε0 , ∅, r↾ε0) in which

Complete uses st(ε0, r);

(iii) if 〈(pi, qi) : i < i∗〉 is a partial play of aλ
0 (Pε1 , ∅, r) in which Complete

uses st(ε1, r) and p′ ∈ Pε0 is stronger than all pi↾ε0 (for i < i∗),

then there is p∗ ∈ Pε1 such that p′ = p∗↾ε0 and p∗ ≥ pi for i < i∗.

Proof: Let r ∈ Pγ . For each ε < γ choose a Pε-name st
˜

ε for a function such

that in VPε :

• the domain Dom(st
˜

ε) of st
˜

ε consists of all sequences 〈(pi, qi) : i < i∗〉⌢〈pi∗〉

such that i∗ < λ, pi, qj ∈ Q
˜

ε for i ≤ i∗, j < i∗,

• if ḡ = 〈pi, qi : i < i∗〉⌢〈pi∗〉 ∈ Dom(st
˜

ε), then st
˜

ε(ḡ) ∈ Q
˜

ε is stronger than

pi∗ ,

• if ḡ = 〈pi, qi : i < i∗〉⌢〈pi∗〉 ∈ Dom(st
˜

ε) and p∗i = r(ε), then st
˜

ε(ḡ) = r(ε),

• st
˜

ε is a winning strategy of Complete in aλ
0 (Q

˜
ε, ∅, r(ε)) (when restricted

to relevant sequences).

Now, for ε0 ≤ γ, we define a strategy st(ε0, r↾ε0) of Complete in aλ
0 (Pε0 , ∅, r↾ε0)

as follows. Let 〈(pi, qi) : i < i∗〉⌢〈pi∗〉 be a partial play of aλ
0 (Pε0 , ∅, r↾ε0),

i∗ < λ. The answer qi∗ given to Complete by st(ε0, r↾ε0) is described by

• Dom(qi∗) = Dom(pi∗), and for each ε ∈ Dom(qi∗):

• if pi∗(ε) = r(ε), then qi∗(ε) = r(ε), otherwise qi∗(ε) is the <∗χ-first Pε-name

for a member of Q
˜

ε such that

Pε
qi∗(ε) = st

˜
ε(〈(pi(ε), qi(ε) : i < i∗〉⌢〈pi∗(ε)〉).

Definition A.1.7 (Compare [20, A.3.3, A.3.2]):

(1) Let α, γ be ordinals, ∅ 6= w ⊆ γ. A standard (w,α)γ-tree is a pair

T = (T, rk) such that:

• rk : T −→ w ∪ {γ},

• if t ∈ T and rk(t) = ε, then t is a sequence 〈(t)ζ : ζ ∈ w ∩ ε〉, where

each (t)ζ is a sequence of length α,

• (T,⊳) is a tree with root 〈〉 and such that every chain in T has a

⊳-upper bound in T .

We will keep the convention that T x
y is (T x

y , rk
x
y).
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(2) Suppose that w0 ⊆ w1 ⊆ γ, α0 ≤ α1, and T1 = (T1, rk1) is a standard

(w1, α1)γ-tree. The projection proj
(w1,α1)
(w0,α0)

(T1) of T1 onto (w0, α0) is

defined as a standard (w0, α0)γ-tree T0 = (T0, rk0) such that

T0 = {〈(t)ζ↾α0 : ζ ∈ w0 ∩ rk1(t)〉 : t = 〈(t)ζ : ζ ∈ w1 ∩ rk1(t)〉 ∈ T1}.

The mapping

T1 ∋ 〈(t)ζ : ζ ∈ w1 ∩ rk1(t)〉 7−→ 〈(t)ζ↾α0 : ζ ∈ w0 ∩ rk1(t)〉 ∈ T0

will also be denoted by proj
(w1,α1)
(w0,α0).

(3) We say that T̄ = 〈Tα : α < α∗〉 is a legal sequence of γ-trees if for

some increasing continuous sequence w̄ = 〈wα : α < α∗〉 of subsets of γ

we have

(i) Tα is a standard (wα, α)γ-tree (for α < α∗),

(ii) if α < β < α∗, then Tα = proj
(wβ ,β)

(wα,α)(Tβ).

(4) Suppose that T̄ = 〈Tα : α < α∗〉 is a legal sequence of γ-trees and α∗ is

a limit ordinal. Let wα ⊆ γ be such that Tα is a standard (wα, α)γ-tree

(for α < α∗) and let w =
⋃

α<α∗ wα. The inverse limit
←

lim(T̄ ) of T̄ is

a standard (w,α∗)γ-tree (T lim, rklim) such that

(⊗) T lim consists of all sequences t satisfying

(i) Dom(t) is an initial segment of w (not necessarily proper);

(ii) if ζ ∈ Dom(t), then (t)ζ is a sequence of length α∗;

(iii) 〈(t)ζ↾α : ζ ∈ wα ∩ Dom(t)〉 ∈ Tα for each α < α∗.

(5) A legal sequence T̄ = 〈Tα : α < α∗〉 is continuous if for each limit ordinal

β < α∗, Tβ =
←

lim(T̄ ↾β).

(6) Let Q̄ = 〈Pi,Q
˜

i : i < γ〉 be a λ-support iteration. A standard tree of

conditions in Q̄ is a system p̄ = 〈pt : t ∈ T 〉 such that

• (T, rk) is a standard (w,α)γ -tree for some w ⊆ γ and an ordinal α,

• pt ∈ Prk(t) for t ∈ T , and

• if s, t ∈ T , s ⊳ t, then ps = pt↾ rk(s).

(7) Let p̄0, p̄1 be standard trees of conditions in Q̄, p̄i = 〈pi
t : t ∈ Ti〉, where

T0 = proj
(w1,α1)
(w0,α0)

(T1), w0 ⊆ w1 ⊆ γ, α0 < α1. We will write p̄0 ≤w1,α1
w0,α0

p̄1

(or just p̄0 ≤ p̄1) whenever for each t ∈ T1, letting t′ = proj
(w1,α1)
(w0,α0)

(t) ∈ T0,

we have p0
t′↾ rk1(t) ≤ p1

t .

Remark A.1.8: Concerning Definition A.1.7(4), note that T lim satisfies the

requirements of A.1.7(1) (so lim←(T̄ ) is indeed a standard (w,α∗)γ-tree). Also,

if the sequence T̄ is continuous (and Tα’s are not empty), then T lim 6= ∅.
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Proposition A.1.9: Assume that Q̄ = 〈Pi,Q
˜

i : i < γ〉 is a λ-support iteration

such that for all i < γ we have

Pi
“ Q

˜
i is strategically (<λ)-complete”.

Suppose that p̄ = 〈pt : t ∈ T 〉 is a standard tree of conditions in Q̄, |T | < λ, and

I ⊆ Pγ is open dense. Then there is a standard tree of conditions q̄ = 〈qt : t ∈ T 〉

such that p̄ ≤ q̄ and (∀t ∈ T )(rk(t) = γ ⇒ qt ∈ I).

Proof: For ε ≤ γ and r ∈ Pε, let st(ε, r) be a winning strategy of Complete in

aλ
0 (Pε, ∅, r) as in A.1.6(b). Let

Tmax def
= {t ∈ T : ¬(∃t′ ∈ T )(t ⊳ t′)} = {tζ : ζ < κ}

(where κ < λ is a cardinal). We construct partial plays 〈(pζ
i , q

ζ
i ) : i ≤ κ〉 of

aλ
0 (Prk(ptζ

), ∅, ptζ
) (for ζ < κ) in which Complete uses strategy st(rk(ptζ

), ptζ
)

and such that

(α) if ζ < κ and rk(ptζ
) = γ, then pζ

ζ ∈ I,

(β) if t ⊳ tζ , t ⊳ tξ, t ∈ T , ζ, ξ < κ, i ≤ κ,

then pζ
i ↾ rk(t) = pξ

i ↾ rk(t) and qζ
i ↾ rk(t) = qξ

i ↾ rk(t).

So suppose we have defined pζ
j , q

ζ
j for ζ < κ, j < i < κ. First we look at

〈(pi
j , q

i
j) : j < i〉 — it is a play of aλ

0 (Prk(pti
), ∅, pti

) in which Complete uses

st(rk(pti
), pti

), so we may find a condition pi
i ∈ Prk(pti

) stronger than all pi
j, q

i
j

for j < i, and such that rk(pti
) = γ ⇒ pi

i ∈ I. Next, for ζ < κ, ζ 6= i, we

define pζ
i as follows: let t ∈ T be such that t ⊳ tζ , t ⊳ ti and rk(t) is the largest

possible, we declare that

Dom(pζ
i ) = (Dom(pi

i) ∩ rk(t)) ∪
⋃

j<i

Dom(qζ
j ) ∪ Dom(ptζ

)

and pζ
i ↾ rk(t) = pi

i↾ rk(t), and for ε ∈ [rk(t), γ) we have that pζ
i (ε) is the <∗χ-first

Pε-name for a member of Q
˜

ε such that

pζ
i ↾ε Pε

“pζ
i (ε) is an upper bound to {ptζ

(ε)} ∪ {qζ
j (ε) : j < i}”.

The definition of pζ
i ’s is correct by A.1.6(b)(iii+ii). Also, by the choice of “the

<∗χ-first” names and clause (β) at earlier stages we get clause (β) for pζ
i ’s.

Finally we define qζ
i (for ζ < κ) as the condition given to Complete by

st(rk(tζ), ptζ
) in answer to 〈(pζ

j , q
ζ
j ) : j < i〉⌢〈pζ

i 〉. (Again, one easily verifies

(α), (β).)
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The conditions pζ
κ, q

ζ
κ are chosen in a similar manner except that we do not

have to worry about entering I anymore, so we may take p0
κ to be any bound to

the previously defined conditions p0
i , q

0
i , and other pζ

κ, q
ζ
κ are defined as earlier.

After the above construction is carried out, for t ∈ T we let

qt = pζ
κ↾ rk(t) for some (equivalently, all) ζ < κ such that t E tζ .

It should be clear that q̄ = 〈qt : t ∈ T 〉 is as required.

Let us close this section by recalling an important result on easy ensuring that

λ-support iteration satisfies the λ++-cc. Its proof is a fairly straightforward

modification of the proof of the respective result for CS iterations; see [19,

Ch. III, Thm. 4.1], Abraham [1, §2] for the CS case, Eisworth [6, §3] for the

general case of λ-support iterations.

Theorem A.1.10: Assume 2λ = λ+, λ<λ = λ. Let Q̄ = 〈Pi,Q
˜

i : i < λ++〉 be

λ-support iteration such that for all i < λ++ we have

• Pi is λ-proper,

• Pi
“|Q

˜
i| ≤ λ+”.

Then the limit Pλ++ satisfies the λ++-cc.

A.2. Bounding properties. The results on preservation in CS iterations of

properties like the Sacks property and ωω-bounding property were among the

earliest in the theory of proper forcing. Here we introduce relatives of these

two properties for λ-reals and we show suitable iteration theorems. For both

properties, the properness is “built into the property”.

Recall that λ, λ̄ are assumed to be as specified in Context 0.3.

Definition A.2.1: Let P be a forcing notion.

(1) For a condition p ∈ P and an ordinal i0 < λ we define a game aSacks
λ̄

(i0, p,P)

of two players, Generic and Antigeneric. A play lasts at most λ moves

indexed by ordinals from the interval [i0, λ), and during it the players

construct a sequence 〈(si, q̄
i, p̄i) : i0 ≤ i < λ〉 as follows. At stage i of the

play (where i0 ≤ i < λ), first Generic chooses si ⊆ ≤i+1λ and a system

q̄i = 〈qi
η : η ∈ si ∩ i+1λ〉 such that

(α) si is a complete λ-tree of height i+ 1 and

(∀η ∈ si)(∃ν ∈ si)(η E ν& lh(ν) = i+ 1);

and lh(root(si)) = i0,

(β) for all j such that i0 ≤ j < i we have sj = si ∩ ≤j+1λ,
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(γ) qi
η ∈ P for all η ∈ si ∩ i+1λ, and

(δ) if i0 ≤ j < i, ν ∈ si ∩ j+1λ and ν ⊳ η ∈ si ∩ i+1λ, then pj
ν ≤ qi

η and

p ≤ qi
η,

(ε) |si ∩ i+1λ| < λi.

Then Antigeneric answers choosing a system p̄i = 〈pi
η : η ∈ si ∩

i+1λ〉 of

conditions in P such that qi
η ≤ pi

η for each η ∈ si ∩ i+1λ.

Generic wins a play if she always has legal moves (so the play lasts λ

steps) and there are a condition q ≥ p and a P-name ρ
˜

such that

(⊛) q P “ρ
˜
∈ λλ& (∀i ∈ [i0, λ))(ρ

˜
↾(i+ 1) ∈ si & qi

ρ
˜

↾(i+1) ∈ ΓP)”.

(2) We say that P has the strong λ̄-Sacks property whenever

(a) P is strategically (< λ)-complete, and

(b) Generic has a winning strategy in the game aSacks
λ̄

(i0, p,P) for any

i0 < λ and p ∈ P.

(3) We say that P has the λ̄-Sacks property if for every p ∈ P and a

P-name τ
˜

such that p  τ
˜

: λ −→ V, there are a condition q ≥ p

and a sequence 〈aα : α < λ〉 such that |aα| < λα (for α < λ) and

q  “(∀α < λ)(τ
˜

(α) ∈ aα)”.

Remark A.2.2:

(1) At a stage i < λ of a play of aSacks
λ̄

(i0, p,P), the Antigeneric player may

play stronger conditions, and using A.1.4 we may require that if p̄i = 〈pi
η :

η ∈ si∩i+1λ〉 is his move, then the conditions pi
η are pairwise incompatible.

Thus the winning criterion (⊛) could be replaced by

(⊛)− q P “(∀i ∈ [i0, λ))(∃η ∈ si ∩ i+1λ)(qi
η ∈ ΓP)”

(thus eliminating the use of ρ
˜

). However, the λ-branch along which the condi-

tions are from the generic filter will be new (so we cannot replace the name ρ
˜by an object ρ ∈ λλ).

(2) Note that if Generic has a winning strategy in aSacks
λ̄

(0, p,P), then she

has one in aSacks
λ̄

(i0, p,P) for all i0 < λ. (Remember: the sequence λ̄ is

increasing.) The reason why we have i0 as a parameter is a notational

convenience.

(3) Plainly, if Generic has a winning strategy in aSacks
λ̄

(i0, p,P), then she has

one with the following property:

(⊠nice) if si, q̄i are given to Generic as a move at a stage i ∈ [i0, λ), then for

every η ∈ si ∩ iλ, the set {α < λ : η⌢〈α〉 ∈ si} is an initial segment

of λi and η(j) = 0 for all j < i0.

Strategies satisfying the condition (⊠nice) will be called nice.
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(4) Easily, if P has the strong λ̄-Sacks property, then it has the λ̄-Sacks prop-

erty.

Let us note that the demand A.2.1(2b) already implies a large amount of

completeness.

Proposition A.2.3: If Generic has a winning strategy in the game

aSacks
λ̄

(0, p,P), for any p ∈ P,

then P is (λ, λ)-strategically complete.

Proof: The main point is that the trees si played by Generic are complete, so no

branches “die” at limit levels (see 0.2(3)). So when playing a game of aλ
0 (P, λ, r),

Complete may construct aside a play 〈(si, q̄
i, p̄i) : i < λ〉 of aSacks

λ̄
(0, r,P) and

decide her moves in aλ
0 (P, λ, r) as follows. Let st be a winning strategy of

Generic in aSacks
λ̄

(0, r,P).

At the beginning of the game of aλ
0 (P, λ, r), Complete writes aside the first

move (s0, q̄
0) given by st and she picks a node η0 ∈ s0\{〈〉}. Then (in aλ

0 (P, λ, r))

she plays p0 = q0η0
. If q0 is the answer of Incomplete to this move, Complete

writes aside p0
η0

= q0, p0
η = q0η for η ∈ s0 \ {η0, 〈〉}, thus creating a move of

Antigeneric in aSacks
λ̄

(0, r,P).

Suppose that the players have arrived to a stage i < λ of aλ
0 (P, λ, r) and

• they have played 〈pj , qj : j < i〉, and

• Generic has written aside a partial play 〈(sj , q̄
j , p̄j) : j < i〉 of aSacks

λ̄
(0, r,P)

in which st has been used, and

• Generic has chosen a ⊳-increasing sequence 〈ηj : j < i〉 of nodes ηj ∈

sj ∩ j+1λ.

Now Complete applies the strategy st to the play of aSacks
λ̄

(0, r,P) she has written

aside, getting (si, q̄
i). The tree si is complete and it extends all the trees sj (for

j < i), so there is a node ηi ∈ si ∩ i+1λ such that ηj ⊳ ηi (for j < i). Now, in

the play of aλ
0 (P, λ, r) she puts pi = qi

ηi
. If qi is the answer of Incomplete, she

writes aside a move of Antigeneric in aSacks
λ̄

(0, r,P) as follows: pi
ηi

= qi, p
i
η = qi

η

for η ∈ si ∩ i+1λ \ {ηi}.

Easily, the procedure described above gives a winning strategy of Complete

in aλ
0 (P, λ, r).

Theorem A.2.4: Suppose that Q̄ = 〈Pα,Q
˜

α : α < γ〉 is a λ-support iteration

such that for all α < γ:

Pα
“Q

˜
α has the strong λ̄-Sacks property”.
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Then:

(a) Pγ has the λ̄-Sacks property.

(b) If N ≺ (H(χ),∈, <∗χ), |N | = λ, <λN ⊆ N and λ̄, λ, p, Q̄,Pγ , . . . ∈ N ,

p ∈ Pγ , then there is an (N,Pγ)-generic condition r ∈ Pγ stronger than p.

Proof: (a) First note that each Pα is strategically (<λ)-complete (by A.1.6;

remember A.2.1(2a)), so our assumptions on λ, λ̄ hold in intermediate universes

VPα .

For α < γ and i0 < λ and a Pα-name q
˜

for a condition in Q
˜

α, let st
˜

α(i0, q
˜

)

be the <∗χ-first Pα-name for a nice (see A.2.2(3)) winning strategy of Generic

in the game aSacks
λ̄

(i0, q
˜
,Q
˜

α).

Let τ
˜

be a Pγ-name for a function from λ to V, p ∈ Pγ . Pick a model

N ≺ (H(χ),∈, <∗χ) such that

λ̄, λ, τ
˜
, p, Q̄,Pγ , . . . ∈ N, and |N | = λ and <λN ⊆ N.

Note that if i0 < λ, α ∈ N ∩ γ, and q
˜
∈ N is a Pα-name for a member of Q

˜
α,

then st
˜

α(i0, q
˜

) ∈ N . Also, as Q̄ is a λ-support iteration of (<λ)-strategically

complete forcing notions, we may use A.1.6 inside N and for each ε ∈ N∩(γ+1)

and r ∈ Pε ∩ N fix a winning strategy st∗(ε, r) ∈ N of Complete in the game

aλ
0 (Pε, ∅, r) so that conditions (i)–(iii) of A.1.6(b) hold.

Fix a list Ī = 〈Iξ : ξ < λ〉 of all open dense subsets of Pγ from N and

a bijection π : N ∩ γ −→ λ (we may assume that γ ≥ λ). For i < λ let

wi = π−1[i] (thus w̄ = 〈wi : i < λ〉 is an increasing continuous sequence of

subsets of N ∩ γ, each of size < λ, and
⋃

i<λ wi = N ∩ γ).

By induction on i < λ we define sequences

〈Ti : i < λ〉 and 〈p̄i, p̄i
∗ : i < λ is not a limit ordinal 〉

such that the following requirements are satisfied.

(α) 〈Ti : i < λ〉 is a continuous legal sequence of γ-trees; Ti ∈ N is a standard

(wi, i)
γ-tree, |Ti+1| < λi, and (∀t ∈ Ti)(∃t′ ∈ Ti)(t E t′& rki(t

′) = γ).

(β) For i < λ and t ∈ Ti such that rki(t) < γ let ψi(t) = {(s)rki(t) : t ⊳ s ∈ Ti}.

Then (for each i, t as above) ∅ 6= ψi(t) ⊆
∏

j<i λj and for each η ∈ ψi(t)

and i′ < π(rki(t)) we have η(i′) = 0.

(γ) If ξ ∈ N ∩ γ, π(ξ) < i < j < λ, t ∈ Tj , rkj(t) = ξ and t′ = proj
wj ,j

wi,i
(t) ∈ Ti

(so rki(t
′) = ξ), then ψi(t

′) = {η↾i : η ∈ ψj(t)}.

(δ) T0 = {〈〉}, p̄0 = 〈p0
〈〉〉, p

0
〈〉 = p, and for i < λ, p̄i+1 = 〈pi+1

t : t ∈ Ti+1〉

and p̄i+1
∗ = 〈pi+1

∗,t : t ∈ Ti+1〉 are standard trees of conditions in Q̄, both

belonging to N and such that p̄i+1
∗ ≤ p̄i+1.
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(ε) If i < j < λ, then p̄i+1 ≤
wj+1,j+1
wi+1,i+1 p̄

j+1.

(ζ) If ti+1 ∈ Ti+1 (for i < λ) are such that rki+1(ti+1) = γ and ti+1 =

proj
wj+1,j+1
wi+1,i+1 (tj+1) (for i < j), then 〈pi+1

∗,ti+1
, pi+1

ti+1
: i < λ〉 is a play of the

game aλ
0 (Pγ , ∅, p) in which Complete uses the strategy st∗(γ, p).

(η) If t ∈ Ti+1, rki+1(t) = γ, then pi+1
t ∈ Iξ for all ξ ≤ i and pi+1

t forces a

value to τ
˜

(i).

(θ) Assume that ξ ∈ N ∩γ, π(ξ) = i0 ≤ i and t ∈ Ti+1 is such that rki+1(t) =

ξ. Let, for j ≤ i, tj = proj
wi+1,i+1
wj ,j (t) and let r

˜
be the <∗χ-first Pξ-name

for a member of Q
˜

ξ such that

Pξ
“if there is a common upper bound to {pj

tj
(ξ) : j ≤ i0 is non-limit},

then r
˜

is such an upper bound, else r
˜

= p(ξ)”.

Furthermore, for i0 ≤ j ≤ i and η ∈ ψj+1(tj+1), fix sj+1
η ∈ Tj+1 such that

rkj+1(sj+1
η ) > ξ and (sj+1

η )ξ = η, tj+1 ⊳ sj+1
η , and put r

˜
j
η = pj+1

s
j+1
η

(ξ).

Then the condition pi+1
t forces in Pξ the following:

there is a partial play 〈sj , q̄
j , r̄j : i0 ≤ j ≤ i〉 of the game

aSacks
λ̄

(i0, r
˜
,Q
˜

ξ) in which the Generic player uses the strategy
st
˜

ξ(i0, r
˜

) and, for i0 ≤ j ≤ i,

sj ∩
j+1λ = ψj+1(tj+1) and r̄j = 〈r

˜
j
η : η ∈ sj ∩

j+1λ〉.

Concerning the choice of sj+1
η (and r

˜
j
η) in clause (θ) above, note that (for

t, η, j as above):

if s+η , s
∗
η ∈ Tj+1 are such that rkj+1(sx

η) > ξ, (sx
η)ξ = η and tj+1 ⊳ sx

η

(for x ∈ {∗,+}), then pj+1

s
+
η

(ξ) = pj+1
s∗

η
(ξ) = pj+1

s (ξ), where s =

tj+1 ∪ {(ξ, η)} = s+η ↾(ξ + 1) = s∗η↾(ξ + 1)

(remember p̄j+1 is a standard tree of conditions; see the last demand in A.1.7(6)).

Let us describe how the construction of 〈Ti : i < λ〉 and 〈p̄i+1 : i < λ〉 is

carried out. We start with letting T0 = {〈〉}, p0
〈〉 = p (as in (δ)). Now suppose

that we have defined Tj , p̄
j, p̄j
∗ for j < i < λ so that clauses (α)–(θ) are satisfied.

If i is a limit ordinal, then we let Ti =
←

lim(〈Tj : j < i〉) ∈ N (p̄i, p̄i
∗ are not

defined). It is straightforward to verify conditions (α)–(γ) (use the inductive

hypothesis), clauses (δ)–(θ) are not relevant.

So suppose now that i is a successor ordinal, say i = i0 + 1. First we let

T ∗ be the largest standard (wi, i)
γ-tree such that projwi,i

wi0 ,i0
(T ∗) = Ti0 , if t =

〈(t)ζ : ζ ∈ wi ∩ rk∗(t)〉 ∈ T ∗, then (t)ζ(i0) < λi0 , if π(ζ) = i0, then (t)ζ↾i0 ≡ 0.

(Plainly T ∗ ∈ N and |T ∗| < λ.) Next, for each t ∈ T ∗ we define a condition
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qt ∈ Prk∗(t) ∩N and names α
˜

t(ξ) for ordinals (for ξ ∈ wi ∩ rk∗(t)). For this let

us fix t ∈ T ∗ and let tj = projwi,i
wj ,j(t) ∈ Tj for j < i. Put

Dom(qt) =
(

wi ∪
⋃

{Dom(pj
tj

) : j < i is not a limit }
)

∩ rk∗(t),

and for ζ ∈ Dom(qt) let qt(ζ) be a Pζ-name for a member of Q
˜

ζ chosen as

follows. If ζ ∈ Dom(qt) \ wi, then qt(ζ) is the <∗χ-first Pζ-name such that

Pζ
“if possible, then qt(ζ) is an upper bound to {pj

tj
(ζ) : j < i is non-limit}”.

If ζ ∈ Dom(qt)∩wi, then α
˜

t(ζ) ∈ N is a Pζ-name for an element of λi and qt(ζ)

is the <∗χ-first Pζ-name for a condition in Q
˜

ζ with the following property.

Let r
˜

be the <∗χ-first Pζ-name for a member of Q
˜

ζ such that

Pζ
“if possible, then r

˜
is an upper bound to {pj

tj
(ζ) : j ≤ π(ζ) is non-limit},

else r
˜

= p(ζ)”.

Now, suppose that Gζ ⊆ Pζ is a generic filter over V and pj+1
tj+1

↾ζ ∈ Gζ

for all j < i0, and work in V[Gζ ]. Then, by clause (θ), there is a par-

tial play 〈sj , q̄
j , r̄j : π(ζ) ≤ j < i0〉 of the game aSacks

λ̄
(π(ζ), r

˜
G,Q

˜

Gζ

ζ ) in

which Generic uses st
˜

ζ(π(ζ), r
˜

)Gζ , and sj ∩ j+1λ = ψj+1(tj+1↾ζ) and r̄j =

〈rj
η : η ∈ sj ∩ j+1λ〉, where rj

η = (pj+1

s
j+1
η

(ζ))Gζ for sj+1
η ∈ Tj+1 such that

tj+1↾ζ ⊳ sj+1
η , (sj+1

η )ζ = η and rkj+1(sj+1) = γ. So we may look at the

answer si0 , q̄i0 = 〈qi0
ν : ν ∈ si0 ∩ i0+1λ〉 to this play according to the strat-

egy st
˜

ζ(π(ζ), r
˜

)Gζ . Then, qt(ζ)
Gζ is a condition stronger than all rj

(tj+1)ζ
for

π(ζ) ≤ j < i0, and such that

if (t)ζ ∈ si0 , then qt(ζ)
Gζ = qi0

(t)ζ
.

Also, α
˜

t(ζ)Gζ = {α < λi : (ti0 )ζ
⌢〈α〉 ∈ si0}.

(If π(ζ) = i0, then we do not have the partial play we started with — the game

just begins and we look at the first move of Generic, requiring that qt(ζ)
Gζ is

stronger than r
˜

Gζ and if (t)ζ ∈ si0 then qt(ζ)
Gζ = qi0

(t)ζ
.)

This finishes the definition of q̄ = 〈qt : t ∈ T ∗〉. One easily checks that q̄ ∈ N

is a tree of conditions (remember the choice of “the <∗χ-first names”). Also, by

induction on ζ ∈ Dom(qt), one verifies that p̄j ≤wi,i
wj ,j q̄ for all non-limit j ≤ i0.

(Note that if π(ζ) = i0, t ∈ T ∗, and rk∗(t) > ζ, then in the inductive process

we know that by clause (ζ)

qt↾ζ Pζ
“there is a common upper bound to {pj

tj
(ζ) : j ≤ π(ζ) is non-limit}”
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and thus qt↾ζ forces that the respective condition r
˜

is stronger than all pj
tj

(ζ)

(for non-limit j ≤ π(ζ)).)

Next, we use A.1.9 to pick a standard tree of conditions p̄∗ = 〈p∗t : t ∈ T ∗〉 ∈ N

such that q̄ ≤ p̄∗ and for each t ∈ T ∗ with rk∗(t) = γ the condition p∗t decides

the values of all names α
˜

t′(ζ) for t′ ∈ T ∗, ζ ∈ wi ∩ rk(t′) and the value of τ
˜

(i0)

(and let p∗t  “τ
˜

(i0) = τ t
i0

”), and such that p∗t ∈ Iξ for all ξ ≤ i0. For t ∈ T ∗

with rk∗(t) = γ and for ζ ∈ wi let αt(ζ) be the value forced to α
˜

t(ζ) by p∗t .

Since α
˜

t(ζ) is a Pζ-name, we have that

t0 ⊳ t1 ∈ T ∗& rk∗(t1) = γ& ζ ∈ wi ∩ rk∗(t0) ⇒ p∗t0  α
˜

t0(ζ) = αt1(ζ).

So we may naturally define αt(ζ) also for t ∈ T ∗ with rk(t) < γ. Now we let

Ti = Ti0+1 = {t ∈ T ∗ : (∀ζ ∈ wi ∩ rk∗(t))((t)ζ (i0) < αt(ζ))}

and pi
∗,t = p∗t for t ∈ Ti (thus defining p̄i

∗). Plainly, Ti ∈ N is a standard (wi, i)
γ-

tree satisfying (α)-(γ), p̄i
∗ ∈ N . Finally, using the properties of the strategies

st∗ stated in A.1.6(b) (and the clause (ζ) from earlier stages) we may pick a

standard tree of conditions p̄i = 〈pi
t : t ∈ Ti〉 such that p̄∗ ≤ p̄i and

if t ∈ Ti, rki(t) = γ, tj = projwi,i
wj ,j(t) for non-limit j ≤ i,

then 〈pj+1
∗,tj+1

, pj+1
tj+1

: j < i〉 is a partial play of aλ
0 (Pγ , ∅, p) in which Complete

uses the winning strategy st∗(γ, p).

Now one easily verifies that Ti, p̄
i, p̄i
∗ satisfy requirements (α)–(θ), thus the con-

struction is complete.

Let Tλ =
←

lim(〈Tj : j < λ〉). We will consider this standard (N ∩ γ, λ)γ-tree in

universes VPξ (for ξ ≤ γ), so let us note that forcings Pξ may add new branches

in Tλ. But if (in VPξ) t ∈ Tλ and i < λ, then

t|i
def
= 〈(t)ζ↾i : ζ ∈ wi ∩ rkλ(t)〉 = projN∩γ,λ

wi,i
(t) ∈ V.

Also if i < λ is limit, then the equality Ti =
←

lim(〈Tj : j < i〉) holds in VPξ as

well.

Let us stress it again, the tree Tλ will be considered in the universes after

forcing extensions; each of the forcing notions does not add new branches (nodes)

to the trees Tj (for j < λ) but adds new nodes to Tλ (the forcings involved do

not add new sequences of ordinals of length < λ, but they typically do add

λ-sequences). Now, t|i (for t ∈ Tλ and i < λ) is the restriction of t to level i;

the domain of t is restricted to wi and the values, which are λ-sequences, are

restricted to i. In other words we take the projection of t to the tree Ti. Thus,
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in (ii)α below, the index t
˜

α|(i + 1) is a node in the tree Ti+1! What may be

somewhat confusing here is that we have t
˜

α and t
˜

α— the former is a name for

a λ-sequence, the latter is a sequence of such names. Thus t
˜

α may be (and

actually is) a name for a member of Tλ and we may look at its projection on

Ti+1 which is t
˜

α|(i + 1).

We are going to define a condition r ∈ Pγ such that Dom(r) = N ∩ γ and

the names r(α) are defined by induction on α ∈ N ∩ γ. For α ∈ N ∩ γ we

will also choose Pα+1-names t
˜

α for functions in λλ, and we will put t
˜

α =

〈 t
˜

β : β < α& β ∈ N〉. The construction will be carried out so that (for each

α ∈ N ∩ (γ + 1)):

(i)α r↾α Pα
“t
˜

α ∈ Tλ”,

(ii)α r↾α Pα
“(∀i < λ)((pi+1

t
˜

α|i+1)↾α ∈ ΓPα
)”.

Arriving at a limit stage α ∈ N ∩ (γ + 1), we have defined r↾α and t
˜

α, and

we should only check that conditions (i)α, (ii)α hold (assuming (i)β , (ii)β hold

for β < α, β ∈ N).

RE: (i)α: Tλ is a standard tree, so every chain in Tλ has a ⊳-bound. Now the

first condition follows immediately from the inductive hypothesis.

RE: (ii)α: Suppose that Gα ⊆ Pα is generic over V and r↾α ∈ Gα. Let

i < λ and for β ≤ α let tβi = (t
˜

β |i)Gα∩Pβ ∈ Ti. Then, by (ii)β ,

we know that pi+1

t
β
i+1

↾β ∈ Gα ∩ Pβ (for each β ∈ α ∩ N). But

pi+1
tα
i+1

↾β = pi+1

t
β
i+1

↾β (as tβi+1 ⊳ tαi+1), so remembering that pi+1
tα
i+1

∈ N

we conclude pi+1
tα
i+1

↾α ∈ Gα.

Now suppose that we arrived at stage α+1 ∈ N ∩(γ+1) and we have defined

r↾α, t
˜

α so that (i)α+ (ii)α hold. Let Gα ⊆ Pα be generic over V, r↾α ∈ Gα.

For i < λ let tαi = (t
˜

α|i)Gα ∈ Ti (remember (i)α). Plainly, tαj = projwi,i
wj ,j(tαi ) for

j < i < λ. By (ii)α we get pi+1
tα
i+1

↾α ∈ Gα for all i < λ.

(⊞)α Let i0 = π(α) and let r
˜

be the <∗χ-first Pα-name for an element of Q
˜

α

such that (r
˜
∈ V, of course, and)

Pα
“if there is a common upper bound to {pj

tα
j

(α) : j ≤ i0 is non-limit}

then r
˜

is such an upper bound, else r
˜

= p(α)”.

(Note: for each j∗ < λ the sequence 〈tαj : j < j∗〉 belongs to the ground model

V, and even to N .)

Fix j∗ < λ, j∗ > i0 for a moment. In V, for each i ∈ [i0, j
∗] and η ∈

ψi+1(tαi+1) let us choose si+1
η ∈ Ti+1 such that tαi+1 ⊳ si+1

η , (si+1
η )α = η. Now

work in V[Gα]. Since pj∗+1
tα
j∗+1

∈ Gα, we may use clause (θ) of the construction
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to claim that there is a partial play σ̄j∗ = 〈si, q̄
i, r̄i : i0 ≤ i ≤ j∗〉 of the

game aSacks
λ̄

(i0, r
˜

Gα , (Q
˜

α)Gα) in which Generic uses st
˜

α(i0, r
˜

Gα) and si ∩ i+1λ =

ψi+1(tαi+1) and r̄i = 〈(pi+1

s
i+1
η

(α))Gα : η ∈ si ∩ i+1λ〉.

It should be clear that (in V[Gα]) σ̄j∗ ⊳ σ̄j∗∗ for i0 < j∗ < j∗∗ < λ, so

we have a play σ̄ =
⋃

i0<j∗<λ σ̄
j∗ = 〈si, q̄

i, r̄i : i0 ≤ i < λ〉 of the game

aSacks
λ̄

(i0, r
˜

Gα , (Q
˜

α)Gα) with the respective properties. This play is won by

Generic, so there are a condition q ∈ (Q
˜

α)Gα and a (Q
˜

α)Gα-name ρ
˜

for a mem-

ber of λλ such that q ≥ r
˜

Gα and

(⊗)

q (Q
˜

α)Gα “(∀i ∈ [i0, λ))(ρ
˜
↾(i+ 1) ∈ ψi+1(tαi+1) & pi+1

si+1
ρ
˜

↾(i+1)

(α)Gα ∈ Γ(Q
˜

α)Gα )”.

Let r(α), t
˜

α be names for the q, ρ
˜

as above (i.e., r(α) is a Pα-name of a member

of Q
˜

α and t
˜

α is a Pα+1-name of a member of λλ and r↾α forces that they have

the property stated in (⊗)). It follows from our choices that (i)α+1 + (ii)α+1

hold, finishing the inductive construction of r ∈ Pγ and t
˜

α’s.

For α < λ let aα = {τ t
α : t ∈ Tα+1 & rkα+1(t) = γ} (remember: τ t

α is the

value forced to τ
˜

(α) by pα+1
t ). Plainly, |aα| < λα for each α < λ.

The proof of the iteration theorem will be complete once we show the following

Claim A.2.4.1: The condition r ∈ Pγ (defined earlier) is stronger than p, it is

(N,Pγ)-generic and r Pγ
“(∀α < λ)(τ

˜
(α) ∈ aα)”.

Proof of the Claim: First, by induction on α ∈ N ∩(γ+1) we are showing that

p↾α ≤ r↾α. There is nothing to do at limit stages, so let us deal with non-limit

ones. Assume we have shown that p↾α ≤ r↾α.

Suppose that Gα ⊆ Pα is generic over V, r↾α ∈ Gα. Let tαj = (t
˜

α|j)Gα ∈ Tj,

and let i0, r
˜

be defined as in (⊞)α. Since, by (ii)α, pj
tα
j
↾α ∈ Gα (for non-limit

j ≤ i0) and by the clause (ζ) of the construction, we get

V[Gα] |= “there is a common upper bound to {pj
tα
j
(α)Gα : j ≤ i0is non-limit}”,

and thus

V[Gα] |= “(∀j < i0)(pj+1
tα
j+1

(α)Gα ≤ r
˜

Gα)”.

By the choice of r(α) we have r(α)Gα ≥ r
˜

Gα ≥ p(α)Gα .

Hence r↾α  p(α) ≤ r(α), as needed.

Now, let G ⊆ Pγ be generic over V, r ∈ G. For i < λ let ti = (tγ |i)G ∈ Ti.

By (ii)γ we know that pi+1
ti+1

∈ G. By clause (η) we have pi+1
ti+1

∈ Ii and (by the

definition of ai) p
i+1
ti+1

 τ
˜
∈ ai. The former implies that G intersects I ∩N for

each open dense subset I of Pγ from N , the latter gives τ
˜

G(i) ∈ ai.
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(b) Included in the proof of (a).

Definition A.2.5: Let P be a forcing notion.

(1) For a condition p ∈ P and an ordinal i0 < λ we define a game abd
λ (i0, p,P)

like aSacks
λ̄

(i0, p,P), but demand A.2.1(1(ε)) is replaced by

(ε)− |si ∩ i+1λ| < λ.

(2) P has the strong λ-bounding property if

(a) P is strategically (< λ)-complete, and

(b) Generic has a winning strategy in the game abd
λ (i0, p,P) for every

i0 < λ, p ∈ P.

(3) P has the λ-bounding property if for every p ∈ P and a P-name τ
˜

such

that p “ τ
˜
→ V”, there are a condition q ≥ p and a sequence 〈aα : α < λ〉

such that |aα| < λ (for α < λ) and q “(∀α < λ)(τ
˜

(α) ∈ aα)”.

Remark A.2.6:

(1) All the remarks stated in A.2.2, A.2.3 have their (obvious) parallels for

the λ-bounding properties.

(2) Clearly, (strong) λ̄-Sacks property implies (strong, respectively) λ-bound-

ing property.

Theorem A.2.7: Suppose that Q̄ = 〈Pα,Q
˜

α : α < γ〉 is a λ-support iteration

such that for all α < λ:

Pα
“Q

˜
α has the strong λ-bounding property”.

Then:

(a) Pγ has the λ-bounding property.

(b) If N ≺ (H(χ),∈, <∗χ), |N | = λ, <λN ⊆ N and λ, p, Q̄,Pγ , . . . ∈ N , p ∈ Pγ ,

then there is an (N,Pγ)-generic condition r ∈ Pγ stronger than p.

Proof: Basically the same as for A.2.4, just replacing each occurrence of λi

by λ.

The results of this section will be improved, simplified and generalized in [14].

A.3. Fuzzy properness over λ. A properness-type property preserved in

λ-support iterations, so called properness over semi-diamonds, was intro-

duced in Ros lanowski and Shelah [16]. That property worked for any uncount-

able regular cardinal λ satisfying λ<λ = λ (not necessarily strongly inaccessible),

so because of the known ZFC limitations a number of natural forcing notions

were not covered. For the context considered in this paper we may do much
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better: fuzzy properness introduced in this section captures more examples.

Even though we do not prove a real preservation in λ-support iterations, our

iteration theorem A.3.10 is satisfactory for most applications (see sections B.4

and B.8 later).

In this section we fix λ∗, A,W and D such that

Context A.3.1:

(1) λ∗ > λ is a regular cardinal, A ⊆ H<λ(λ∗) (see 0.1(5)), W ⊆ [A]λ, and if

a ∈W , w ∈ [a]<λ, f : w −→ a, then f ∈ a (hence also 0 ∈ a for a ∈ W ),

(2) for every x ∈ H(χ) there is a model N ≺ (H(χ),∈, <∗χ) such that |N | = λ,
<λN ⊆ N , x ∈ N and N ∩A ∈W ,

(3) D is a normal filter on λ such that there is a D-diamond (see A.3.2).

Definition A.3.2:

(1) We say that F̄ = 〈Fδ : δ ∈ S〉 is a D-pre-diamond sequence if

• S ∈ D+ contains all successor ordinals below λ, λ \ S is unbounded

in λ, 0 /∈ S, and

• Fδ: δ −→ λ for all δ ∈ S.

(2) A convenient D-diamond is a D-pre-diamond F̄ = 〈Fδ : δ ∈ S〉 such

that

(∀f ∈ λλ)({δ ∈ S : Fδ ⊆ f} ∈ D+).

Definition A.3.3: Let P be a forcing notion. A λ-base for P over W is a pair

(R, Ȳ) such that

(a) R ⊆ P × λ×A is a relation such that

if (p, δ, x) ∈ R and p ≤P p
′, then (p′, δ, x) ∈ R,

(b) Ȳ = 〈Ya : a ∈ W 〉 where, for each a ∈ W , Ya: λ −→ [a]<λ,

(c) if q ∈ P, a ∈W , and δ < λ is a limit ordinal,

then there are p ≥P q and x ∈ Ya(δ) such that (p, δ, x) ∈ R.

If R is understood and (p, δ, x) ∈ R, then we may say p obeys x at δ.

Definition A.3.4: Let P be a forcing notion and let (R, Ȳ) be a λ-base for P

over W . Also let a model N ≺ (H(χ),∈, <∗χ) be such that |N | = λ, <λN ⊆ N ,

a
def
= N ∩ A ∈ W and {λ,P, D,R} ∈ N . Furthermore, let h: λ −→ N be such

that the range Rng(h) of the function h includes P∩N and let F̄ = 〈Fδ : δ ∈ S〉

be a D-pre-diamond sequence.

(1) Let Ī = 〈Iα : α < λ〉 ⊆ N list all open dense subsets of P from N . A

sequence p̄ = 〈pα : α < δ〉 of conditions from P ∩ N of length δ ≤ λ is
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called Ī-exact if

(∀ξ < δ)(∃α < δ)(pα ∈ Iξ).

(2) We say that F̄ is a quasi D-diamond sequence for (N, h,P) if for some

(equivalently, all) list Ī = 〈Iα : α < λ〉 of all open dense subsets of P from

N , for every ≤P-increasing sequence p̄ = 〈pα : α < λ〉 ⊆ P ∩N such that

p̄ is Ī-exact, or equivalently

E
def
= {δ < λ : 〈pα : α < δ〉 is Ī-exact} ∈ D,

we have

{δ ∈ E ∩ S : (∀α < δ)(h ◦ Fδ(α) = pα)} ∈ D+.

(3) For a limit ordinal δ ∈ S we define Y(δ) = Y(N,P, h, F̄ ,R, Ȳ, δ) as the set

{x ∈ Ya(δ) : if 〈h ◦ Fδ(α) : α < δ〉 is a ≤P-increasing sequence

of conditions from P,

then there is a condition p ∈ P such that

(∀α < δ)(h ◦ Fδ(α) ≤P p) and (p, δ, x) ∈ R}

(Note: if x ∈ Y(δ), then there is p ∈ N witnessing this.)

(4) Let Ī = 〈Iα : α < λ〉 ⊆ N list all open dense subsets of P from N . A

sequence q̄ = 〈qδ,x : δ ∈ S limit & x ∈ Xδ〉 ⊆ N ∩ P is called a weak

fuzzy candidate over F̄ for (N, h,P,R, Ȳ, Ī) whenever ∅ 6= Xδ ⊆ Y(δ)

(for limit δ ∈ S) and

(α) {δ ∈ S : (∀x ∈ Xδ)(qδ,x ∈ Iα)} = SmodD for each α < λ, and

(β) if δ ∈ S is a limit ordinal, x ∈ Xδ, and 〈h ◦ Fδ(α) : α < δ〉 is a

≤P-increasing Ī-exact sequence of members of P ∩N ,

then (∀α < δ)(h ◦ Fδ(α) ≤P qδ,x) and (qδ,x, δ, x) ∈ R.

If above Xδ = Y(δ) for each limit δ ∈ S, then q̄ is called a fuzzy candi-

date over F̄ for (N, h,P,R, Ȳ, Ī).

Omitting Ī means “for some Ī”.

(5) Let q̄ = 〈qδ,x : δ ∈ S limit & x ∈ Xδ〉 be a weak fuzzy candidate over F̄ for

(N, h,P,R, Ȳ, Ī), and r ∈ P. We define a game a
fuzzy
λ (r,N, Ī, h,P, F̄ , q̄) of

two players, the Generic player and the Antigeneric player, as follows.

A play lasts λ moves, in the ith move a condition ri ∈ P and a set Ci ∈ D

are chosen such that (∀j < i)(r ≤ rj ≤ ri), and Generic chooses ri, Ci

if i ∈ S = Dom(F̄ ), and Antigeneric chooses ri, Ci if i /∈ S. In the end

Generic wins the play if (there were always legal moves for both players

and)
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(α) (∀α < λ)(∃i < λ)(∃p ∈ P ∩N)(p ∈ Iα & p ≤ ri), and

(β) if δ ∈ S ∩
⋂

i<δ Ci is a limit ordinal, 〈h ◦ Fδ(α) : α < δ〉 is a ≤P-

increasing Ī-exact sequence and (∀α < δ)(∃i < δ)(h ◦ Fδ(α) ≤ ri),

then for some x ∈ Xδ we have qδ,x ≤ rδ.

(6) Let q̄ be a weak fuzzy candidate over F̄ for (N, h,P,R, Ȳ, Ī). We say that

a condition r ∈ P is (R, Ȳ)-fuzzy generic for q̄ (over (N, Ī, h,P, F̄ )) if

Generic has a winning strategy in the game a
fuzzy
λ (r,N, Ī, h,P, F̄ , q̄).

Remark A.3.5:

(1) For any two lists Ī1, Ī2 of open dense subsets of P from N , on a club E

of λ we have

{I1
ξ : ξ < δ} = {I2

ξ : ξ < δ}

for δ ∈ E. Thus the corresponding notions of exactness agree for δ ∈ E.

As Generic can choose Ci ⊆ E, in A.3.4(4,5,6) we may not mention Ī as

a parameter.

(2) Plainly, every fuzzy candidate is a weak fuzzy candidate.

Definition A.3.6: Let P be a (<λ)-complete forcing notion.

(1) We say that P is fuzzy proper over quasi D-diamonds for W when-

ever for some λ-base (R, Ȳ) for P over W and for some c ∈ H(χ),

(⊛) if • N ≺ (H(χ),∈, <∗χ), |N | = λ, <λN ⊆ N , λ,P, c,R ∈ N , and

a
def
= N ∩A ∈ W , p ∈ P ∩N ,

• h: λ −→ N satisfies P ∩N ⊆ Rng(h), and

• F̄ is a quasi D-diamond for (N, h,P) and q̄ is a fuzzy candidate

over F̄ ,

then there is r ∈ P stronger than p and such that r is (R, Ȳ)-fuzzy generic

for q̄.

(We may call (R, Ȳ) and c witnesses for fuzzy properness.)

(2) P is strongly fuzzy proper over quasi D-diamonds whenever for

some λ-base (R, Ȳ) for P over W and for some c ∈ H(χ),

(⊛)+ if • N ≺ (H(χ),∈, <∗χ), |N | = λ, <λN ⊆ N , λ,P, c,R ∈ N , and

a
def
= N ∩A ∈ W , p ∈ P ∩N ,

• h: λ −→ N satisfies P ∩N ⊆ Rng(h),

• F̄ is a quasi D-diamond for (N, h,P) and q̄ is a weak fuzzy

candidate over F̄ ,

then there is a condition r ∈ P stronger than p such that r is (R, Ȳ)-fuzzy

generic for q̄.
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(3) P is weakly fuzzy proper over quasi D-diamonds whenever for some

λ-base (R, Ȳ) for P over W and for some c ∈ H(χ),

(⊛)− if • N ≺ (H(χ),∈, <∗χ), |N | = λ, <λN ⊆ N , λ,P, c,R ∈ N , and

a
def
= N ∩A ∈ W , p ∈ P ∩N ,

• h: λ −→ N satisfies P ∩N ⊆ Rng(h),

then for some quasi D-diamond F̄ for (N, h,P) and a weak fuzzy candi-

date q̄ over F̄ , there is a condition r ∈ P stronger than p such that

r is (R, Ȳ)-fuzzy generic for q̄.

(4) P is fuzzy proper for W if it is fuzzy proper over quasi D′-diamonds for

every normal filter D′ on λ (which has diamonds). Similarly for strongly

fuzzy and weakly fuzzy proper.

Remark A.3.7: Strong fuzzy properness is very close to properness over

semi-diamonds of Ros lanowski and Shelah [16] and even closer to proper-

ness over diamonds introduced by Eisworth [6]. (Note that considering

the condition A.3.6(⊛)+ we may assume that the weak fuzzy candidate

q̄ = 〈qδ,x : δ ∈ S is limit & x ∈ Xδ〉 is such that |Xδ| = 1 for each relevant

δ, so one may treat it as q̄ = 〈qδ : δ ∈ S is limit 〉.) Thus fuzzy properness

has a flavour of a weaker property. However, the differences in technical details

of the conditions introduced in this section and those in [16] and/or [6] make

it unclear if there are any implications between the “properness conditions” in

this section and those in the other two papers.

Proposition A.3.8: Let N,P, h, Ī,R, Ȳ be as in A.3.4, F̄ = 〈Fδ : δ ∈ S〉 be a

D-pre-diamond. Assume also that the forcing notion P is (<λ)-complete.

(1) There exists a fuzzy candidate q̄ over F̄ for (N, h,P,R, Ȳ, Ī). In fact we

can even demand:

(+) for every α < λ, for every large enough δ ∈ S, qδ,x ∈ Iα for all

x ∈ Y(δ).

(2) If r is (R, Ȳ)-fuzzy generic for some weak fuzzy candidate q̄, then r is

(N,P)-generic (in the standard sense).

(3) Assume that a condition r is (N,P)-generic (in the standard sense), F̄ is

a quasi D-diamond and q̄ is a weak fuzzy candidate over (N, Ī, h,P, F̄ ).

Suppose that Generic has a strategy in the game a
fuzzy
λ (r,N, Ī, h,P, F̄ , q̄)

which guarantees that the result 〈ri, Ci : i < λ〉 of the play satisfies

A.3.4(5)(β). Then she has a winning strategy in a
fuzzy
λ (r,N, Ī, h,P, F̄ , q̄)

(i.e., one ensuring (α) + (β) of A.3.4(5)).

(4) If P is fuzzy proper over quasi D-diamonds, then it is weakly fuzzy proper
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over quasi D-diamonds. If P is strongly fuzzy proper over quasi D-

diamonds, then it is fuzzy proper over quasi D-diamonds.

(5) Assume that P is weakly fuzzy proper over quasi D-diamonds, µ ≥ λ,

Y ⊆ [µ]≤λ, A∗ ⊆ H(χ), W ∗ ⊆ [A∗]λ (Y,A∗,W ∗ ∈ V). Then:

(a) forcing with P does not collapse λ+,

(b) forcing with P preserves the following two properties:

(i) Y is a cofinal subset of [µ]≤λ (under inclusion),

(ii) for every x ∈ H(χ) there is N ≺ (H(χ),∈, <∗χ) such that

|N | = λ, <λN ⊆ N , N ∩ A∗ ∈ W ∗ (i.e., the stationarity of

W ∗ under the relevant filter).

Proof:

(1) Immediate (by the (<λ)-completeness of P; remember A.3.3(c) and that

R ∈ N ; note that Ya(δ) ∈ N).

(2) Remember that 0 /∈ S, so in the game a
fuzzy
λ (r,N, Ī, h,P, F̄ , q̄) the condi-

tion r0 is chosen by Antigeneric. So if the conclusion fails, then for some

P-name α
˜

∈ N for an ordinal we have r 6 “α
˜

∈ N”. Thus Antigeneric

can choose r0 ≥ r so that r0  “α
˜

= α0” for some ordinal α0 /∈ N , what

guarantees him to win the play (remember clause (α) of A.3.4(5)).

(3) Generic modifies her original strategy as follows. During the play she

builds aside a ≤P-increasing sequence of conditions 〈pi : i ∈ λ\S〉 ⊆ P∩N

such that pi ≤ ri for i ∈ λ \ S. Arriving to stage i+ 1, i ∈ λ \ S, she has

two sequences: 〈rj , Cj : j ≤ i〉 (of the play) and 〈pj : j ∈ i \ S〉 such that

pj ≤ rj . Now Generic picks pi ∈ P ∩N such that

(∀j ∈ i \ S)(pj ≤ pi) and (∀ξ < i)(pi ∈ Iξ),

and pi, ri are compatible. (Remember: the set of all p ∈ P such that p ∈ Iξ

for all ξ < i and for each j ∈ i \ S either pj ≤ p or pj , p are incompatible

is open dense in P and it belongs to N . Now use the assumption that r

is (N,P)-generic). Next she replaces ri by a common upper bound of pi

and ri, pretending that that was the condition played by her opponent,

and then she plays according to her original strategy. One easily verifies

that this is a winning strategy for the Generic player.

(4) Straightforward (remember that, by A.3.1(3), there is a quasi D-diamond

and by A.3.8(1) there is a fuzzy candidate over it).

(5) Follows from (2) by the same arguments as used in the “standard proper

forcing” version of this claim.



Vol. 159, 2007 SHEVA–SHEVA–SHEVA: LARGE CREATURES 135

Proposition A.3.9: (<λ+)-complete forcing notions are strongly fuzzy proper

for W .

Proof: This is essentially a variant of [16, 2.5], but since we did not give the

proof there, we will present it fully here.

So suppose that a forcing notion P is (<λ+)-complete. Let Rtr = Rtr(P) be

the trivial relation consisting of all triples (p, δ, 0) such that p ∈ P and δ < λ

and let Ȳtr be such that Ytr
a (δ) = {0} (for each δ < λ, a ∈ W ). Assume now

that

• N ≺ (H(χ),∈, <∗χ), |N | = λ, <λN ⊆ N , λ,P ∈ N , and a
def
= N ∩A ∈ W ,

• p ∈ P ∩N , and h : λ −→ N satisfies P ∩N ⊆ Rng(h),

• F̄ = 〈Fδ : δ ∈ S〉 is a quasi D-diamond for (N, h,P) and q̄ is a weak fuzzy

candidate over F̄ . Since Ytr
a (δ) has a one member only we may think of q̄

as a sequence 〈qδ : δ ∈ S is limit〉.

Let Ī = 〈Iξ : ξ < λ〉 list of all open dense subsets of P from N .

We are going to build a condition r ∈ P stronger than p which is (Rtr, Ȳtr)-

fuzzy generic for q̄. For this we inductively build a ≤P-increasing sequence

〈r′i : i < λ〉 ⊆ P ∩N such that

• r′0 = p, r′i+1 ∈
⋂

ξ≤i Iξ,

• if there is an upper bound to {r′j : j < i} ∪ {qi}, then r′i is such an upper

bound.

Then we pick any upper bound r to the sequence 〈r′i : i < λ〉 (remember: P is

(<λ+)-complete). Now we want to argue that Generic has a winning strategy

in the game a
fuzzy
λ (r,N, Ī, h,P, F̄ , q̄). Since r is (N,P)-generic it is enough to

give a strategy for the Generic player which ensures that the result of the play

satisfies A.3.4(5)(β) (by A.3.8(3)). To this end note that there is a club E0 of

λ such that

• every member of E0 is a limit of ordinals from λ \ S,

• for every δ ∈ E0 and i < δ,

{q ∈ P : q ≥ r′i or q, r′i are incompatible} ∈ {Iξ : ξ < δ},

Let Generic play so that arriving to a stage δ ∈ S of the play she puts E0

and the <∗χ-first upper bound to the conditions played so far. Why does this

strategy work? Let 〈ri, Ci : i < λ〉 be the result of the play in which Generic

plays as described above and let δ ∈ S ∩
⋂

i<δ Ci be a limit ordinal such that

〈h ◦ Fδ(α) : α < δ〉 is a ≤P-increasing Ī-exact sequence and

(∀α < δ)(∃i < δ)(h ◦ Fδ(α) ≤ ri).
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Then no r′i, h ◦ Fδ(α) (for i, α < δ) can be incompatible, so (since δ ∈ E0 and

〈h ◦ Fδ(α) : α < δ〉 is Ī-exact) we have also

(∀i < δ)(∃α < δ)(r′i ≤ h ◦ Fδ(α)),

and hence qδ is stronger than all r′i (for i < δ). Therefore qδ ≤ r′δ ≤ rδ.

Theorem A.3.10: Let A,W,D be as in A.3.1 and let Q̄ = 〈Pα,Q
˜

α : α < ζ∗〉 be

a λ-support iteration of (<λ)-complete forcing notions, and assume that ζ∗ ⊆ A.

Suppose also that for each ζ < ζ∗ we have Ȳζ and Pζ-names R
˜

ζ , c
˜

ζ such that

Pζ
“Q

˜
ζ is fuzzy proper over quasi D-diamonds for W

with witnesses (R
˜

ζ , Ȳ
ζ) and c

˜
ζ”.

Then Pζ∗ = lim(Q̄) is weakly fuzzy proper over quasi D-diamonds.

Note: in the assumptions of A.3.10, Ȳζ are objects not names, i.e., Ȳζ ∈ V.

Proof: By A.1.5, the forcing notion Pζ∗ is (<λ)-complete, so we have to concen-

trate on showing clause A.3.6(3)((⊛)−) for it. The proof, though not presented

as such, is by induction on ζ∗. However, the inductive hypothesis is used only

to be able to claim that A,W,D are as in A.3.1 when considered in the interme-

diate universes VPζ (for ζ < ζ∗) — remember A.3.8(5). Thus our assumptions

on Q
˜

ζ ’s are meaningful.

Let us fix a convenient D-diamond sequence F̄ ′ = 〈F ′δ : δ ∈ S〉 (so in par-

ticular, S ∈ D+ contains all successors, λ \ S is unbounded in λ and 0 /∈ S).

Put

E0
def
= {δ < λ : δ is a limit of points from λ \ S}, E1

def
= (λ \ S) ∪ E0.

Plainly, E0, E1 are clubs of λ. Let 〈iα : α < λ〉 be the increasing enumeration

of E1 and E2 = E0 ∩ {α < λ : iα = α} (So E2 is a club of λ too).

For each a ∈W fix a one-to-one mapping πa: a∩ζ∗ −→ λ such that πa(0) = 0

(say, πa is the <∗χ-first such function), and for α < λ let wa
α = (πa)−1[iα] (so

a ∩ ζ∗ =
⋃

α<λw
a
α).

For ζ ≤ ζ∗ let R[ζ] consist of all triples (p, δ, x̄) ∈ Pζ × λ × A such that for

some non-empty w ∈ [ζ]<λ we have

x̄ = 〈xε : ε ∈ w〉 and (∀ε ∈ w)(p↾ε Pε
“(p(ε), δ, xε) ∈ R

˜
ε”).

Next, for ζ ≤ ζ∗, a ∈W and δ < λ we put

Y[ζ]
a (δ) =

∏

{Yε
a(δ) : ε ∈ wa

δ ∩ ζ},
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thus defining Y
[ζ]
a and Ȳ[ζ] = 〈Y

[ζ]
a : a ∈ W 〉. If ζ = ζ∗ we will omit it (so then

we write R and Ȳ).

Claim A.3.10.1: For each ζ ≤ ζ∗, (R[ζ], Ȳ[ζ]) is a λ-base for Pζ over W .

Proof of the claim: Immediate, by the definition of R[ζ], Ȳ[ζ] we see that clauses

(a), (b) of A.3.3 hold (note: Y
[ζ]
a (δ) ⊆ a by A.3.1(1)). Now, to verify A.3.3(c),

suppose q ∈ Pζ , a ∈ W and δ < λ is a limit ordinal. For each ε ∈ wa
δ ∩ ζ let

p′(ε), x
˜
′
ε be Pε-names such that

q↾ε Pε
“p′(ε) ≥ q(ε) & x

˜
′
ε ∈ Yε

a(δ) & (p′(ε), δ, x
˜
′
ε) ∈ R

˜
ε”,

and for ε ∈ Dom(q) \ wa
δ let p′(ε) = q(ε). This defines a condition p′ ∈ Pζ

stronger than q (and names x
˜
′
ε). Since Pζ is (<λ)-complete we may find a

condition p ≥ p′ and xε ∈ Yε
a(δ) (for ε ∈ wa

δ ∩ ζ) such that p↾ε Pε
“x
˜
′
ε = xε”

(for ε ∈ wa
δ ∩ ζ). Then, by A.3.3(a), we have p↾ε Pε

“ (p(ε), δ, xε) ∈ R
˜

ε ” (for

each ε ∈ wa
δ ∩ ζ), and (p, δ, 〈xε : ε ∈ wa

δ ∩ ζ〉) ∈ R[ζ].

Our aim now is to show that Pζ∗ is weakly fuzzy proper with witnesses (R, Ȳ)

and c = (〈c
˜

ε : ε < ζ∗〉, 〈R
˜

ε : ε < ζ∗〉,R, Ȳ, S,D, F̄ ′, Q̄). So suppose that a model

N ≺ (H(χ),∈, <∗χ) satisfies

|N | = λ, <λN ⊆ N, λ,Pζ∗ , c ∈ N, a
def
= N ∩A ∈W,

and p ∈ Pζ∗ ∩N , and h : λ −→ N is such that Pζ∗ ∩N ⊆ Rng(h). To simplify

the notation later, let π = πa, wα = wa
α (for α < λ).

Let us fix a list Ī = 〈Iα : α < λ〉 of all open dense subsets of Pζ∗ from N .

For ζ ∈ (ζ∗ + 1) ∩ N , let Ī [ζ] = 〈I
[ζ]
α : α < λ〉, where I

[ζ]
α = {p ↾ ζ : p ∈ Iα}.

(Note that Ī [ζ] lists all open dense subsets of Pζ from N .) Also for ζ ∈ ζ∗ ∩N

let Jζ = {p ∈ Pζ∗ : p↾ζ  p(ζ) 6= ∅
˜

Q
˜

ζ
} (so Jζ is an open dense subset of Pζ∗

from N) and let E3 = {α ∈ E2 : (∀ζ ∈ wα)(∃β < α)(Jζ = Iβ)}. Clearly, E3 is

a club of λ.

Now, using the diamond F̄ ′ fixed earlier, we are going to define a quasi D-

diamond sequence F̄ (and then a weak fuzzy candidate q̄ over it) that will be

as required by (⊛)− of A.3.6(3). So, for each δ ∈ S we let

Z(δ) = {ζ ∈ (ζ∗ + 1) \ {0} : 〈(h ◦ F ′δ(α)) ↾ ζ : α < δ〉 is a ≤Pζ
-increasing

Ī [ζ]-exact sequence of members of N ∩ Pζ}

and if Z(δ) 6= ∅ then we put γ(δ) = sup(Z(δ)). Note that Z(δ) ∈ N and thus

γ(δ) ∈ N (when defined). Now, the pre–diamond F̄ = 〈Fδ : δ ∈ S〉 is picked so

that for a limit δ ∈ S:
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(⊙)1 if Z(δ) 6= ∅, then h ◦ Fδ(α) = (h ◦ F ′δ(α)) ↾ γ(δ) for all α < δ;

(⊙)2 if Z(δ) = ∅, then h ◦ Fδ(α) = ∅Pζ∗ for all α < δ.

Then easily F̄ is a quasi D-diamond for (N, h,Pζ∗) and for each limit δ ∈ S,

〈h ◦ Fδ(α) : α < δ〉 is a ≤Pζ∗ -increasing sequence of conditions from Pζ∗ ∩N .

Note that γ(δ) is chosen for F ′δ and not Fδ. It could happen that above γ(δ),

h ◦F ′δ(α) gives us something that is not a name, and this (and not exactness)

is the reason why γ(δ) is not larger. Then (if our list of open dense sets is tricky)

it could happen that γ(δ) is small but the sequence 〈(h ◦ Fδ(α))↾ζ : α < δ〉 is

Ī [ζ]-exact. This is exactly the reason why we will need E3 — the exactness at

δ ∈ E3 implies that the domains of conditions are large enough.

Just for notational simplicity, we will identify a sequence σ̄ = 〈σ0〉 with its

(only) term σ0. Thus below, when we talk about a standard (w, 1)ζ∗

-tree T , we

think of T as a set of sequences t = 〈(t)ζ : ζ ∈ w ∩ rk(t)〉 where (t)ζ ’s do not

have to be sequences.

Now we are going to define sequences p̄ = 〈pi : i < λ〉 ⊆ Pζ∗ ∩ N ,

〈Tδ : δ ∈ S is limit 〉, and 〈qδ,t : δ ∈ S is limit & t ∈ Tδ〉 ⊆ Pζ∗ ∩ N such

that for a limit ordinal δ ∈ S:

(i) Tδ = (Tδ, rkδ) is a standard (wδ, 1)ζ∗

-tree, and (under the identification

mentioned earlier) {t ∈ Tδ : rkδ(t) = ζ} ⊆ Y
[ζ]
a (δ) for ζ ∈ wδ ∪ {ζ∗}, so

(t)ε ∈ Yε
a(δ) for t ∈ Tδ, ε ∈ wδ ∩ rkδ(t),

(ii) 〈qδ,t : t ∈ Tδ〉 is a standard tree of conditions in Q̄,

(iii) p ≤ pi ≤ pj for i < j < λ,

(iv) if j < λ, then wj ⊆ Dom(pj) and (∀ε ∈ wj)(∀j′ > j)(pj(ε) = pj′(ε)),

(v) if t ∈ Tδ, rkδ(t) = ζ, then qδ,t ∈ Pζ ∩N is such that

(a)
(

⋃

α<δ Dom(h ◦ Fδ(α)) ∪
⋃

i<δ Dom(pi)
)

∩ ζ ⊆ Dom(qδ,t),

(b) (∀α < δ)((h ◦ Fδ)(α)↾ζ ≤ qδ,t), and

(c) if ε ∈ Dom(qδ,t) \ wδ, then

qδ,t ↾ ε  “if the set {pi(ε) : i < δ} ∪ {(h ◦ Fδ(α))(ε) : α < δ}

has an upper bound in Q
˜

ε,

then qδ,t(ε) is such an upper bound”,
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(d) if ε ∈ Dom(qδ,t) ∩ wδ, then

qδ,t ↾ ε  “if the set {pi(ε) : i < δ} ∪ {(h ◦ Fδ(α))(ε) : α < δ}

has an upper bound which obeys (t)ε at δ,

then qδ,t(ε) is such an upper bound,

else qδ,t(ε) is an upper bound of

{(h ◦ Fδ(α))(ε) : α < δ}which obeys (t)ε at δ”,

(e) qδ,t ∈
⋂

ξ<δ I
[ζ]
ξ ,

(vi) if t ∈ Tδ, ζ = rkδ(t) < ζ∗, ζ′ ∈ wδ ∪ {ζ∗} is the successor of ζ in wδ ∪ {ζ∗}

and t′, t′′ ∈ Tδ are such that rkδ(t′) = rkδ(t′′) = ζ′, t ⊳ t′, t ⊳ t′′ and

t′ 6= t′′, then

qδ,t Pζ
“the conditions qδ,t′(ζ) and qδ,t′′(ζ) are incompatible”

(and so also the conditions qδ,t′ , qδ,t′′ are incompatible),

(vii) if t ∈ Tδ and ε ∈ Dom(qδ,t) \ wδ, then ε ∈ Dom(pδ) and

pδ↾ε  “if qδ,t↾ε ∈ ΓPε
and {pi(ε) : i < δ} ∪ {qδ,t(ε)}

has an upper bound in Q
˜

ε,

then pδ(ε) is such an upper bound”,

(viii) if t ∈ Tδ, rkδ(t) = ζ < ζ∗, x ∈ Yζ
a(δ) and

qδ,t 6Pζ
“there is no condition stronger than all

(h ◦ Fδ(α))(ζ) for α < δ which obeys x at δ”,

then there is t′ ∈ Tδ such that t ⊳ t′ and (t′)ζ = x.

Assume that δ < λ and we have defined pi, Ti, qi,t for relevant i < δ and t. If δ

is not a limit ordinal from S, then only pδ ∈ Pζ∗ ∩N needs to be defined, and

clauses (iii), (iv) can easily be taken care of. So suppose that δ ∈ S is limit.

First we let T ′δ be a standard (wδ, 1)ζ∗

-tree such that {t ∈ T ′δ : rkδ(t) = ζ} =

Y
[ζ]
a (δ) (for ζ ∈ wδ ∪ {ζ∗}). For t ∈ T ′δ we define a condition rt ∈ Prk′

δ
(t) so that

Dom(rt) =

(

⋃

α<δ

Dom(h ◦ Fδ(α)) ∪
⋃

i<δ

Dom(pi) ∪ wδ

)

∩ rk′δ(t),

and for each ζ ∈ Dom(rt), rt(ζ) is the <∗χ-first Pζ-name for a condition in Q
˜

ζ

such that:
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if ζ ∈ wδ, then

rt↾ζ Pζ
“if the family {pi(ζ) : i < δ} ∪ {(h ◦ Fδ(α))(ζ) : α < δ}

has an upper bound which obeys (t)ζ at δ,

then rt(ζ) is such an upper bound,

if the previous is impossible, but there is an upper bound of

{(h ◦ Fδ(α))(ζ) : α < δ} which obeys (t)ζ at δ

then rt(ζ) is such an upper bound,

if neither of the previous two possibilities holds,

then rt(ζ) is an upper bound of {(h ◦ Fδ(α))(ζ) : α < δ}”,

and if ζ /∈ wδ, then

rt↾ζ Pζ
“if the family {pi(ζ) : i < δ} ∪ {(h ◦ Fδ(α))(ζ) : α < δ}

has an upper bound, then rt(ζ) is such an upper bound,

if this is not possible, then rt(ζ) is just an upper bound of

{(h ◦ Fδ(α))(ζ) : α < δ}”.

Plainly, |T ′δ| < λ and r̄ = 〈rt : t ∈ T ′δ〉 is a standard tree of conditions, and

it belongs to N (remember: <λN ⊆ N). So using A.1.9 in N we may pick a

standard tree of conditions r̄∗ = 〈r∗t : t ∈ T ′δ〉 ∈ N such that r̄ ≤ r̄∗ and for

each t ∈ T ′δ and ζ ∈ wδ ∩ rk′δ(t) the condition r∗t ↾ζ decides the truth value of

the sentence

“r∗t (ζ) obeys (t)ζ at δ (with respect to R
˜

ζ)”

(remember the choice of rt(ζ) for ζ ∈ wδ and A.3.3(a)). Put

Tδ = {t ∈ T ′δ : for each ζ ∈ wδ ∩ rk′δ(t), r∗t ↾ζ Pζ
“r∗t (ζ) obeys (t)ζ at δ”},

and notice that Tδ ∈ N is a standard (wδ, 1)ζ∗

-tree.

Let us argue that for each t ∈ Tδ there is t′ ∈ Tδ such that t E t′ and

rkδ(t′) = ζ∗. First note that, by our choices we have:

• 〈(h ◦ Fδ)(α) : α < δ〉 is an increasing sequence of conditions in Pζ∗ ,

• for each t ∈ T ′δ and α < δ, the condition rt is stronger than (h◦Fδ)(α)↾ rk′δ(rt),

• every t ∈ T ′δ can be extended to an element of T ′δ with rank ζ∗, as a matter

of fact, if t ∈ T ′δ, rk′δ(t) = ζ < ζ∗ and x ∈ Yζ
a(δ), then t⌢〈x〉 ∈ T ′δ.

Suppose now that t ∈ Tδ, ζ = rkδ(t) ∈ wδ (so also t ∈ T ′δ and rk′δ(t) = ζ). For

each x ∈ Yζ
a(δ), t⌢〈x〉 ∈ T ′δ. So r∗

t⌢〈x〉 is defined and by the choice of r̄∗ the

condition r∗t decides the truth value of “r∗
t⌢〈x〉(ζ) obeys x at δ”. We are going to
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argue that for some z ∈ Yζ
a(δ) the decision above is positive, i.e., r∗t = r∗

t⌢〈z〉↾ζ

forces that “r∗
t⌢〈z〉(ζ) obeys z at δ”. This will imply that t⌢〈z〉 ∈ Tδ.

The condition r∗t is stronger than rt, so by what we said earlier it forces

that “〈(h ◦ Fδ)(α)(ζ) : α < δ〉 is an increasing sequence of conditions in Q
˜

ζ

and therefore it has an upper bound”. Now look at A.3.3(c) and apply it to a

condition q which is stronger than all (h ◦ Fδ)(α)(ζ): r∗t also forces “there are

an x ∈ Yζ
a(δ) and a condition q′ ∈ Q

˜
ζ stronger than all (h ◦Fδ)(α)(ζ) for α < δ

and such that q′ obeys x”. It follows from the choice of rt⌢〈x〉(ζ) for x ∈ Yζ
a(δ)

that r∗t forces “there is an x ∈ Yζ
a(δ) such that rt⌢〈x〉(ζ) obeys x at δ”, and

therefore also r∗t forces “there is an x ∈ Yζ
a(δ) such that r∗

t⌢〈x〉(ζ) obeys x at δ”

(remember A.3.3(a)). Therefore, it cannot be the case that for all z ∈ Yζ
a(δ),

r∗t forces “r∗t⌢〈z〉(ζ) does not obey z at δ”, so we can pick z as desired.

Proceeding inductively in this manner, we may extend any sequence in Tδ to

one with rank ζ∗.

Finally, using A.1.4 and A.1.9 next in N we may choose a standard tree of

conditions 〈qδ,t : t ∈ Tδ〉 ∈ N which satisfies clauses (vi) and (v)(e) and such

that r∗t ≤ qδ,t (for t ∈ Tδ). It should be clear that then Tδ and 〈qδ,t : t ∈ Tδ〉

satisfy all the relevant demands from our list ((i)–(viii)). Now finding a condition

pδ ∈ Pζ∗ ∩N which satisfies (iii)+(iv)+(vii) is straightforward. (Note that, by

(vi), if t′, t′′ ∈ Tδ, ε ∈ Dom(qδ,t′) ∩ Dom(qδ,t′′), ε /∈ wδ and the conditions

qδ,t′↾ε, qδ,t′′↾ε are compatible, then qδ,t′↾(ε+ 1) = qδ,t′′↾(ε+ 1).)

For a limit ordinal δ ∈ S and ζ ∈ N ∩ (ζ∗ + 1) we let

• X
[ζ]
δ = {t↾ζ : t ∈ Tδ & rkδ(t) = ζ∗};

• if s ∈ X
[ζ]
δ , then q

[ζ]
δ,s = qδ,t↾ζ for some (equivalently: all; remember (ii))

t ∈ Tδ such that s E t and rkδ(t) = ζ∗;

• q̄[ζ] = 〈q
[ζ]
δ,s : δ ∈ S is limit &s ∈ X

[ζ]
δ 〉;

• h[ζ]: λ −→ N is such that h[ζ](γ) = (h(γ)) ↾ ζ provided h(γ) is a function,

and h[ζ](γ) = ∅Pζ
otherwise.

Plainly, ∅ 6= X
[ζ]
δ ⊆ Y

[ζ]
a (δ) (remember (i)) and h[ζ] : λ −→ N is such that

Pζ ∩N ⊆ Rng(h[ζ]). Moreover, one easily verifies the following

Claim A.3.10.2: Let ζ ∈ N ∩ (ζ∗+1). Then F̄ is a quasi D-diamond sequence

for (N, h[ζ],Pζ) and q̄[ζ] is a weak fuzzy candidate over F̄ for

(N, h[ζ],Pζ ,R
[ζ], Ȳ[ζ], Ī [ζ]).

We may write q̄, qδ,t,Xδ for q̄[ζ
∗], q

[ζ∗]
δ,t ,X

[ζ∗]
δ , respectively. Also note that, in

the context of our definitions, the functions h and h[ζ∗] behave the same, so we

may identify them. Of course, we are going to define an (R, Ȳ)-fuzzy generic
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condition r ∈ Pζ∗ for q̄ over F̄ , but before that we have to introduce more

notation used later and prove some important facts.

For ζ ∈ ζ∗ ∩N we define a function h〈ζ〉 and Pζ-names S
˜
〈ζ〉,X

˜

〈ζ〉
δ , I

˜

〈ζ〉
α , F̄

˜
〈ζ〉,

Ī
˜
〈ζ〉 and q̄

˜

〈ζ〉 so that:

• h〈ζ〉 : λ −→ N is such that if h(γ) is a function, ζ ∈ Dom(h(γ)) and

(h(γ))(ζ) is a Pζ-name then h〈ζ〉(γ) = ((h(γ))(ζ), otherwise h〈ζ〉(γ) = ∅
˜

Q
˜

ζ
;

• Pζ
“S
˜
〈ζ〉 = {δ ∈ S : if δ is limit then δ > π(ζ) & (∃s ∈ X

[ζ]
δ )(q

[ζ]
δ,s ∈ ΓPζ

)}”;

• Pζ
“if δ ∈ S

˜
〈ζ〉 is limit, then X

˜

〈ζ〉
δ = {x ∈ Yζ

a(δ) : (∃t ∈ Xδ)(qδ,t↾ζ ∈

ΓPζ
& (t)ζ = x)}”;

• Pζ
“q̄
˜

〈ζ〉 = 〈q
˜

〈ζ〉
δ,x : δ ∈ S

˜
〈ζ〉 is limit &x ∈ X

˜

〈ζ〉
δ 〉”, where:

• Pζ
“if δ ∈ S

˜
〈ζ〉 is limit and x ∈ X

˜

〈ζ〉
δ , then q

˜

〈ζ〉
δ,x = qδ,t(ζ) for some (equiv-

alently: all) t ∈ Xδ such that qδ,t↾ζ ∈ ΓPζ
and (t)ζ = x”

(again, remember (ii));

• Pζ
“ F̄

˜
〈ζ〉 = 〈Fδ : δ ∈ S

˜
〈ζ〉〉”;

• Pζ
“Ī
˜
〈ζ〉 = 〈I

˜

〈ζ〉
α : α < λ〉”, where:

• Pζ
“I
˜

〈ζ〉
α = {p(ζ) : p ∈ Iα & p ↾ ζ ∈ ΓPζ

}”.

Naturally, we treat h〈ζ〉 as a Pζ-name for a function from λ to N [ΓPζ
]. Observe

that Pζ
“N [ΓPζ

] ∩ Q
˜

ζ ⊆ Rng(h〈ζ〉)”, and

Pζ
“Ī
˜
〈ζ〉 lists all open dense subsets of Q

˜
ζ from N [ΓPζ

]”.

Claim A.3.10.3: Assume that ζ ∈ N ∩ ζ∗ and r ∈ Pζ is a (R[ζ], Ȳ[ζ])-fuzzy

generic condition for q̄[ζ] over (N, Ī [ζ], h[ζ],Pζ , F̄ ). Then

(1) r Pζ
“S
˜
〈ζ〉 ∈ D+”,

(2) r Pζ
“F̄

˜
〈ζ〉 is a quasi D-diamond for (N [ΓPζ

], h〈ζ〉,Q
˜

ζ)”, and

(3) r Pζ
“q̄
˜

〈ζ〉 is a fuzzy candidate for (N [ΓPζ
], h〈ζ〉,Q

˜
ζ ,R

˜
ζ , Ȳ

ζ) over F̄
˜
〈ζ〉”.

Proof: (1) Will follow from (2).

(2) Assume that this fails. Then we can find a condition r∗ ∈ Pζ , a Pζ-name

q̄
˜

′ = 〈q
˜

′
α : α < λ〉 for an increasing sequence of conditions from Q

˜
ζ ∩ N [ΓPζ

],

and Pζ-names A
˜

ξ, B
˜

ξ for members of D ∩ V such that r ≤Pζ
r∗ and

r∗ Pζ
“(∀δ ∈ △

ξ<λ

A
˜

ξ)(〈q
˜

′
α : α < δ〉 is Ī

˜
〈ζ〉-exact ) and

(∀δ ∈ S
˜
〈ζ〉 ∩ △

ξ<λ

B
˜

ξ)(〈h〈ζ〉 ◦ Fδ(α) : α < δ〉 6= q̄
˜

′ ↾ δ)”.

Consider a play 〈rj , Cj : j < λ〉 of the game a
fuzzy
λ (r,N, Ī [ζ], h[ζ],Pζ, F̄ , q̄

[ζ]) in

which Generic uses her winning strategy and Antigeneric plays as follows.
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Together with choosing rj (for j ∈ λ \ S), Antigeneric chooses also side con-

ditions p+
j ∈ N ∩ Pζ , sets Aξ, Bξ ∈ D and Pζ-names q

˜

∗
ξ ∈ N for elements of Q

˜
ζ

(for ξ ≤ j) such that

• rj ≥ r∗ (so r0 ≥ r∗; remember Antigeneric plays at 0), rj ≥ ri (for i < j),

and rj ≥ p+
j and

• rj Pζ
“(∀ξ ≤ j)(A

˜
ξ = Aξ &B

˜
ξ = Bξ & q

˜

′
ξ = q

˜

∗
ξ)”, and

• if j′ < j are from λ \ S, then p+
j ≥ p+

j′ , and p+
j ∈

⋂

ξ<j I
[ζ]
ξ , and

• p+
j Pζ

“(∀ξ0 < ξ1 ≤ j)(q
˜

∗
ξ0

≤ q
˜

∗
ξ1

)”, and

• if δ < j, δ ∈
⋂

ξ<δ Aξ, then p+
j

⌢
〈q
˜

∗
j 〉 ∈ I

[ζ+1]
ξ for all ξ < δ.

(The Cj ’s are not that important for our argument, so we do not specify any

requirements on them. Regarding the choice of the p+
j ’s, remember A.3.8(2); for

the last two demands remember that q
˜

′
j ’s are (forced to be) increasing.) After

the play, Antigeneric completes 〈p+
j : j ∈ λ \ S〉 to a ≤Pζ

-increasing sequence

〈p+
j : j < λ〉 ⊆ N ∩ Pζ letting p+

j = p+
min(λ\S\(j+1)) for j ∈ S.

Note that if δ ∈ E0 is a limit of elements of △ξ<λAξ, then the

sequence 〈p+
j

⌢
〈q
˜

∗
j 〉 : j < δ〉 is Ī [ζ+1]-exact and increasing (and 〈p+

j : j < δ〉

is Ī [ζ]-exact). So, as D is normal and Aξ, Bξ, Cj ∈ D and F̄ is a

quasi D-diamond for (N, h[ζ+1],Pζ+1) (by A.3.10.2), we may find an ordinal

δ ∈ S ∩ E0 ∩ △ξ<λ Aξ ∩ △ξ<λ Bξ ∩ △j<λ Cj \ (π(ζ) + 1) which is a limit of

members of △ξ<λ Aξ and such that 〈h[ζ+1] ◦Fδ(j) : j < δ〉 = 〈p+
j

⌢
〈q
˜

∗
j 〉 : j < δ〉.

By the choice of F̄ we know that h(Fδ(j)) is a condition in Pζ∗ (so a function)

and hence h〈ζ〉(Fδ(j)) = q
˜

∗
j for all j < δ. Also

(∀i < δ)(∃j ∈ δ \ S)(h[ζ] ◦ Fδ(i) ≤Pζ
h[ζ] ◦ Fδ(j) = p+

j ≤Pζ
rj).

Since the play is won by Generic, for some s ∈ X
[ζ]
δ we have q

[ζ]
δ,s ≤ rδ. But then

rδ  “δ ∈ S〈ζ〉 ∩ △
ξ<λ

B
˜

ξ & 〈h〈ζ〉 ◦ Fδ(α) : α < δ〉 = q̄′↾δ”,

a contradiction.

Comment on the proof above: for these arguments we really need more

than just (N,Pζ)-genericity of r, as we need to know that rδ forces δ ∈ S
˜
〈ζ〉 (see

the definition of F̄
˜
〈ζ〉; note also part (1) of A.3.10.3). Now look at the definition

of S
˜
〈ζ〉. Note that F̄

˜
〈ζ〉 is (a name for) a subsequence of F̄ ; without doing

something that involves q̄ we could get into the situation where the domain of

this subsequence is non-stationary. Playing the fuzzy game works well here.

(3) Straightforward (remember the choice of qδ,t’s, specifically clauses

(v)(b,d,e) and (viii)).
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Now we are going to define an (R, Ȳ)-fuzzy generic condition r ∈ P for q̄ over

(N, Ī, h,Pζ∗ , F̄ ) in the most natural way. Its domain is Dom(r) = ζ∗ ∩N and

for each ζ ∈ ζ∗ ∩N

r ↾ ζ  “r(ζ) ≥ pπ(ζ)+1(ζ) is an (R
˜

ζ , Ȳ
ζ)-fuzzy generic condition for q̄〈ζ〉

over (N [ΓPζ
], Ī

˜
〈ζ〉, h〈ζ〉,Q

˜
ζ , F̄

˜
〈ζ〉)”.

(So r ≥ pi for all i < λ.)

Claim A.3.10.4: For every ζ ∈ (ζ∗ + 1)∩N , the Generic player has a winning

strategy in the game a
fuzzy
λ (r ↾ ζ,N, Ī [ζ], h[ζ],Pζ , F̄ , q̄

[ζ]).

Proof of the Claim: We will prove the claim by induction on ζ ∈ (ζ∗ + 1)∩N .

After we are done with stage ζ ∈ (ζ∗ + 1)∩N , we know that r↾ζ is (R[ζ], Ȳ[ζ])-

fuzzy generic for q̄[ζ] over (N, Ī [ζ], h[ζ],Pζ , F̄ ). For ζ ∈ ζ∗ ∩N this implies that

r(ζ) is well-defined (remember A.3.10.3). Of course for ζ = ζ∗ we finish the

proof of the theorem.

Suppose that ζ ∈ (ζ∗ + 1) ∩N and we know that r ↾ ζ′ is (R[ζ′], Ȳ[ζ′])-fuzzy

generic for q̄[ζ
′] over (N, Ī [ζ′], h[ζ′],Pζ′ , F̄ ) for all ζ′ ∈ N ∩ ζ. We are going to

define a winning strategy st for Generic in the game

a
fuzzy
λ (r↾ζ,N, Ī [ζ], h[ζ],Pζ, F̄ , q̄

[ζ]).

First, for ε ∈ ζ ∩N fix a Pε-name st
˜

ε such

r↾ε  “st
˜

ε is a winning strategy of the Generic player

in the game a
fuzzy
λ (r(ε), N [ΓPε

], Ī
˜
〈ε〉, h〈ε〉,Q

˜
ε, F̄

〈ε〉, q̄〈ε〉)”.

We will think of st
˜

ε as a name for a function from <λ-sequences of members of

Q
˜

ε×D (thought of as pairs of sequences of the same length < λ) to Q
˜

ε×D such

that if (σ̄
˜
, C̄
˜

) ∈ Dom(st
˜

ε) and σ̄
˜

has an upper bound, then the first coordinate

of stε(σ̄
˜
, C̄
˜

) is such an upper bound (and, of course, any play according to st
˜

ε

is won by Generic). (In a play of a
fuzzy
λ (r(ε), N [ΓPε

], Ī
˜
〈ε〉, h〈ε〉,Q

˜
ε, F̄

〈ε〉, q̄〈ε〉)

only the values of st
˜

ε at “legal partial plays according to st
˜

ε” matter, but it is

notationally convenient to have st
˜

ε giving values for all sequences of elements

of Q
˜

ε ×D, even if first coordinates are not increasing, as well as for sequences

after which Antigeneric should play.)

We will describe the strategy st by giving the answers of Generic on in-

tervals S ∩ [iα, iα+1) (for α < λ), where, remember, 〈iα : α < λ〉 is the

increasing enumeration of E1. Aside the Generic player will construct sequences
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〈r
˜
′
j′(ε) : j′ < λ, ε ∈ ζ ∩ N〉 and 〈C

˜

ξ
j′ (ε) : j′, ξ < λ, ε ∈ ζ ∩ N〉 so that, letting

rj ∈ Pζ be the conditions played in the game,

(∗)1 r
˜
′
j′ (ε) is a Pε-name for a member of Q

˜
ε, C

˜

ξ
j′ (ε) is a Pε-name for a member

of D ∩V, and

(∗)2 if α < λ, δ = min(S∩[iα, iα+1)), and ε ∈ wα+1∩ζ, then after the δ-th move

(which is a move of the Generic player) the terms r
˜
′
j′(ε), 〈C

˜

ξ
j′(ε) : ξ < λ〉

are defined for all j′ < iα+1, and

(∗)3 if α < λ, ε ∈ wα+1 ∩ ζ and p∗ ∈ Pε is stronger than all rj↾ε for j ∈

(iα + 1) \ S, then

p∗ Pε
“(∀j ∈ (iα + 1) \ S)(rj(ε) ≤ r

˜
′
iα

(ε))”,

(∗)4 if α < λ, ε ∈ wα+1 ∩ ζ and riα+1 is the condition played by Generic at

stage iα + 1 ∈ S, then

riα+1↾ε Pε
“(∀j′ < iα+1)(r

˜
′
j′ (ε) ≤ riα+1(ε))”,

(∗)5 for each ε ∈ N ∩ ζ,

r↾ε Pε
“〈r

˜
′
j(ε), △

ξ<λ

C
˜

ξ
j(ε) : j < λ〉 is a legal play of the game

a
fuzzy
λ (r(ε), N [ΓPε

], Ī〈ε〉, h〈ε〉,Q
˜

ε, F̄
〈ε〉, q̄

˜

〈ε〉)

in which Generic uses st
˜

ε”.

So suppose that α < λ, δ = min(S ∩ [iα, iα+1)) and 〈rj , Cj : j < δ〉 is the result

of the play so far. Now Generic looks at ordinals ε ∈ wα+1 ∩ ζ. She lets the

Pε-names r
˜
′
j′ (ε), C

˜

ξ
j′ (ε) be such that 〈r

˜
′
j′ (ε),△ξ<λC

˜

ξ
j′ (ε) : j′ < iα+1〉 is forced

by r↾ε to be a play of a
fuzzy
λ (r(ε), N [ΓPε

], Ī〈ε〉, h〈ε〉,Q
˜

ε, F̄
〈ε〉, q̄

˜

〈ε〉) in which the

moves are determined as follows. If ε ∈ wα, then we have already the play below

iα and the names r
˜
′
iα

(ε), C
˜

ξ
iα

(ε) are such that

• if iα = δ (i.e., iα ∈ S and ri, Ci have been chosen for i < iα only), then

r↾ε Pε
“(r

˜
′
iα

(ε), △
ξ<λ

C
˜

ξ
iα

(ε)) is the value of st
˜

ε

applied to 〈r
˜
′
j(ε), △

ξ<λ

C
˜

ξ
j(ε) : j < iα〉,”

• if iα < δ (i.e., iα /∈ S so ri, Ci are already chosen for i ≤ iα), then

r↾ε Pε
“if (∀j < iα)(r

˜
′
j(ε) ≤ riα

(ε)) then r
˜
′
iα

(ε) = riα
(ε)

otherwise r
˜
′
iα

(ε) is the first coordinate of st
˜

ε applied to

the play so far, and C
˜

ξ
iα

(ε) =
⋂

j≤iα

Cj for all ξ < λ”.
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Then for j ∈ (iα, iα+1) (and ε ∈ wα ∩ ζ) the names r
˜
′
j(ε), C

˜

ξ
j(ε) are determined

by applying successively st
˜

ε, that is

r↾ε Pε
“(r

˜
′
j(ε), △

ξ<λ

C
˜

ξ
j(ε)) is the value of st

˜
ε

applied to 〈r
˜
′
j′(ε), △

ξ<λ

C
˜

ξ
j′ (ε) : j′ < j〉.”

If ε ∈ (wα+1 \ wα) ∩ ζ, then the Generic player defines the names r
˜
′
j(ε), C

˜

ξ
j(ε)

somewhat like above, but starting with subscript j = 0. Thus

• if iα = δ, then

r↾ε Pε
“r
˜
′
0(ε) is the first coordinate of the value of st

˜
ε

at 〈rj′ (ε),
⋂

i<iα

Ci : j′ < iα〉

and C
˜

ξ
0(ε) =

⋂

i<iα

Ci for all ξ < λ”,

• if iα < δ, then

r↾ε Pε
“if (∀j < iα)(rj(ε) ≤ riα

(ε)) then r
˜
′
0(ε) = riα

(ε)

otherwise r
˜
′
0(ε) is the first coordinate of the value of st

˜
ε

at 〈rj(ε),
⋂

i<iα

Ci : j < iα〉

and C
˜

ξ
0(ε) =

⋂

j≤iα

Cj for all ξ < λ”.

Last, for 0 < j < iα+1 (and ε ∈ (wα+1 \ wα) ∩ ζ) the names r
˜
′
j(ε), C

˜

ξ
j(ε) are

determined by applying successively st
˜

ε (like earlier).

This defines the names r
˜
′
j(ε), C

˜

ξ
j(ε) for j < iα+1, ξ < λ and ε ∈ wα+1 ∩ ζ. It

is straightforward to check that the requirements (∗)1–(∗)3 and (∗)5 restricted

to ε ∈ wα+1 ∩ ζ (and with “j < λ” replaced by “j < iα+1”) are satisfied.

Next, using the fact that Pζ is (<λ)-complete and (∗)3 of the choice above,

Generic picks a condition r∗ ∈ Pζ such that

(∗)6 r∗ ≥ rj for every j < δ,

(∗)7 r∗↾ε  “r
˜
′
j′ (ε) ≤ r∗(ε)” for every j′ < iα+1 and ε ∈ wα+1 ∩ ζ,

(∗)8 r∗ ∈
⋂

ξ<iα+1
Iξ, and

(∗)9 for every j′, ξ < iα+1 and ε ∈ wα+1 ∩ ζ, the condition r∗↾ε decides the

value of C
˜

ξ
j′(ε), say r∗↾ε  “C

˜

ξ
j′(ε) = Cξ

j′ (ε)”, where Cξ
j′(ε) ∈ D ∩V.

If iα ∈ S (so δ = iα is a limit ordinal), then Generic picks a condition r+ ∈ Pζ

stronger than r∗ and such that for every t ∈ X
[ζ]
δ and ε ∈ (wδ ∩ ζ) ∪ {ζ} we

have:
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(∗)10 either the conditions r+↾ε and q
[ζ]
δ,t↾ε are incompatible, or q

[ζ]
δ,t↾ε ≤Pε

r+↾ε,

(∗)11 if ε ∈ wδ ∩ ζ and q
[ζ]
δ,t↾ε ≤Pε

r+↾ε, and s ∈ X
[ζ]
δ is such that t↾ε = s↾ε, then

either r+↾ε “q
[ζ]
δ,s(ε), r+(ε) are incompatible” or r+↾ε  “q

[ζ]
δ,s(ε) ≤ r+(ε)”.

If δ > iα (i.e., iα /∈ S) then Generic lets r+ = r∗. Finally, for every j ∈

[iα, iα+1) ∩ S she plays

rj = r+ and Cj = E3 ∩
⋂

{Cξ
j′(ε) : j′, ξ < iα+1, ε ∈ wα+1 ∩ ζ}.

Plainly, riα+1 = r+ satisfies clause (∗)4.

Why does the strategy described above work?

Suppose that 〈rj , Cj : j < λ〉 is a play of the game a(r ↾ ζ,N, Ī [ζ]h[ζ],Pζ, F̄ , q̄
[ζ])

in which the Generic player used this strategy and let 〈r
˜
′
j′(ε) : j′ < λ, ε ∈ ζ∩N〉

and 〈C
˜

ξ
j′(ε) : j′, ξ < λ, ε ∈ ζ ∩N〉 be the sequences she constructed aside.

First let us argue that condition A.3.4(5)(β) holds. We will show slightly

more than actually needed to help later with clause (α). Remember below

that ordinals γ(δ) were defined when we picked our quasi D-diamond F̄ , and

if ε < γ(δ) then the sequence 〈h[ε+1] ◦ Fδ(α) : α < δ〉 is Ī [ε+1]-exact. Now,

suppose that a limit ordinal δ ∈ S ∩
⋂

j<δ Cj (so in particular δ ∈ E3) is such

that

(⊞)δ wδ ∩ ζ ⊆ γ(δ) and (∀α < δ)(∃j < δ)(h[ζ] ◦ Fδ(α) ≤ rj).

(So then (∀α < δ)(h[ζ] ◦ Fδ(α) ≤ rδ). Note also that by the choice of E3, if

〈h[ζ] ◦Fδ(α) : α < δ〉 is Ī [ζ]-exact, then wδ ∩ ζ ⊆ γ(δ). This is the only place we

need E3; compare the discussion after the definition of F̄ .)

We are going to choose t ∈ X
[ζ]
δ and show that q

[ζ]
δ,t ≤ rδ. We do this by

induction on ε ∈ (ζ + 1) ∩ N , defining t↾ε ∈ Tδ and showing that qδ,t↾ε =

qδ,t↾ε↾ε ≤ rδ↾ε (and for ε = ζ we get the desired conclusion). Limit stages

and the initial stage ε = 0 are trivial, so assume that we have defined t↾ε and

have shown qδ,t↾ε↾ε = qδ,t↾ε ≤ rδ↾ε (where ε ∈ ζ ∩N), and let us consider the

restrictions to ε+ 1.

If ε /∈ wδ then t↾(ε + 1) = t↾ε (so it has been already defined). Suppose also

that ε ∈ Dom(qδ,t↾ε) (otherwise there is nothing to do). Look at the clause

(v)(c) of the choice of qδ,t↾ε at the beginning: rδ ≥ r ≥ pδ (and (⊞)δ) implies

that

rδ ↾ ε  “qδ,t↾ε(ε) is an upper bound to {pi(ε) : i < δ}”.

But then also by the clause (vii) there, rδ↾ε  “qδ,t↾ε(ε) ≤ pδ(ε) ≤ rδ(ε)”, so we

are done.
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Suppose now that ε ∈ wδ∩ζ (and thus ε < γ(δ)). Since δ ∈ E3 ⊆ E2, we know

that arriving to stage δ of the game, Generic has already defined r
˜
′
j(ε), C

˜

ξ
j(ε)

for j < δ and ξ < λ (remember (∗)2). Moreover, the condition rδ↾ε forces that

(remember: 〈h[ε+1] ◦ Fδ(α) : α < δ〉 is Ī [ε+1]-exact):

• the sequence 〈h〈ε〉 ◦ Fδ(α) : α < δ〉 is ≤Q
˜

ε
-increasing Ī

˜
〈ε〉-exact, and

• 〈r
˜
′
j(ε),△ξ<λC

˜

ξ
j(ε) : j < δ〉 is a play according to st

˜
ε (by (∗)5), and

• δ ∈ S
˜
〈ε〉∩

⋂

j,ξ<δ C˜

ξ
j(ε) (remember (∗)9 and the choice of Ciα+1 for α < δ),

and hence also δ ∈ S
˜
〈ε〉 ∩

⋂

j<δ △ξ<λC
˜

ξ
j(ε),

• (∀j < δ)(∃j′ < δ)(rj(ε) ≤ r
˜
′
j′(ε)) and (∀j < δ)(∃j′ < δ)(r

˜
′
j(ε) ≤ rj′ (ε))

(by (∗)3 + (∗)4), so also

(∀α < δ)(∃j < δ)(h〈ε〉 ◦ Fδ(α) ≤Q
˜

ε
r
˜
′
j(ε)).

Since st
˜

ε is a name for a winning strategy, we may conclude that (by (∗)7)

rδ↾ε Pε
“(∃x ∈ X

˜

〈ε〉
δ )(q

〈ε〉
δ,x ≤ r

˜
′
δ(ε) ≤ rδ(ε))”.

Now look at (∗)11 remembering clause (vi) of the choice of q̄: by them there is

a unique x ∈ Yε
a(δ) such that letting (t)ε = x we get t↾(ε + 1) ∈ Tδ satisfying

qδ,t↾(ε+1)↾(ε + 1) ≤ rδ↾(ε+ 1).

This completes the inductive proof of A.3.4(5)(β).

Why does A.3.4(5)(α) hold? To show this condition, it is enough to prove

that (⊞)δ holds for unboundedly many δ ∈ S∩△ξ<λCj (remember clause (v)(e)

of the choice of qδ,t’s and what we have already shown). We do this considering

various characters of ζ.

ζ is a limit ordinal of cofinality cf(ζ) < λ.

Pick a closed set u ⊆ ζ such that u ∈ N , 0 ∈ u, otp(u) = cf(ζ) and sup(u) = ζ.

For α < λ let εα ∈ u be such that

α = otp(u ∩ εα) mod cf(ζ).

Now, by induction on α < λ we choose conditions sα ∈ N ∩ Pζ such that

(a)α (∃j < λ)(sα ≤ rj),

(b)α sα ∈ Pεα
∩N ,

(c)α if β < α < λ, then sβ↾(εα ∩ εβ) ≤ sα↾(εα ∩ εβ),

(d)α sα ∈
⋂

γ<α I
[εα]
γ .

So suppose that we have defined sβ ’s for β < α. For β < α let

Iα,β = {s ∈ Pεα
:either sβ↾εα ≤ s,

or sβ↾εα, s are incompatible}.
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Clearly Iα,β ∈ N is an open dense subset of Pεα
. Since the condition r↾εα

is (N,Pεα
)-generic and the increasing sequence 〈rj↾εα : j < λ〉 enters all open

dense subsets of Pεα
from N (by (∗)8), we may find sα ∈

⋂

β<α Iα,β ∩
⋂

j<α I
[εα]
j

such that sα ≤ rj↾εα for all j < λ large enough. By (a)β (for β < α) we conclude

that sα and sβ↾εα cannot be incompatible, and hence clauses (a)α–(d)α are

satisfied.

Now, let conditions s′α ∈ Pζ ∩ N (for α < λ) be such that Dom(s′α) =
⋃

β≤α Dom(sβ) and s′α(ε) (for ε ∈ Dom(s′α)) is the <∗χ-first Pε-name for a con-

dition in Q
˜

ε satisfying

s′α↾ε Pε
“(∀β < α)(s′β(ε) ≤ s′α(ε)) and

if there is a γ ∈ [α, λ) such that (∀β < α)(s′β(ε) ≤ sγ(ε))

then s′α(ε) = sγ(ε) for the first such γ”.

Then the sequence 〈s′α : α < λ〉 is ≤Pζ
-increasing and

(∀α < λ)(∀ε < εα)(sα↾ε Pε
“sα(ε) = s′α(ε)”).

So it follows from (d)α that for each ε ∈ u there is a club C′ε ⊆ λ such that

〈s′α↾ε : α < δ〉 is Ī [ε]-exact for all δ ∈ C′ε. Also, we may pick a club C∗ of λ

such that

(∀δ ∈ C∗)(∀α < δ)(∃j < δ)(s′α ≤ rj),

Now, as F̄ ′ is aD-diamond, for unboundedly many δ∈S∩△j<λ Cj∩
⋂

ε∈u C
′
ε∩C

∗

we have 〈s′α : α < δ〉 = 〈h ◦ F ′δ(α) : α < δ〉. Plainly, defining Fδ for those δ we

had clause (⊙)1 with γ(δ) ≥ ζ and hence 〈s′α : α < δ〉 = 〈h[ζ] ◦ Fδ(α) : α < δ〉.

Therefore (⊞)δ holds for those δ (remember the choice of C∗).

ζ is a limit ordinal of cofinality ≥ λ.

Let 〈εα : α < λ〉 ⊆ ζ ∩ N be an increasing continuous sequence cofinal with

ζ ∩N , ε0 = 0. By induction on α < λ choose conditions sα such that

(a)α (∃j < λ)(sα ≤ rj),

(b)α sα ∈ Pεα
∩N ,

(c)α if β < α < λ, then sβ ≤ sα,

(d)α sα ∈
⋂

γ<α I
[εα]
γ .

(Possible as r↾εα is (N,Pεα
)-generic and by (∗)8.) For each α < λ, for some

club C′α of λ we have

(∀δ ∈ C′α)(〈sγ↾εα : γ < δ〉 is Ī [εα]-exact).

Take a club C∗ of λ such that for every δ ∈ C∗ we have:
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• wδ ∩ ζ ⊆ εδ, and

• (∀α < δ)(∃j < δ)(sα ≤ rj).

Like before, as F̄ ′ is a D-diamond, for unboundedly many δ ∈ S ∩ △j<λ Cj ∩

△α<λC
′
α ∩ C∗ we have 〈sα : α < δ〉 = 〈h ◦ F ′δ(α) : α < δ〉. Plainly, for those δ

we have γ(δ) ≥ εδ and also 〈sα : α < δ〉 = 〈h[ζ] ◦ Fδ(α) : α < δ〉, and thus (⊞)δ

holds (remember the choice of C∗).

ζ is a successor ordinal.

Like before (remember that, letting ζ = ζ′ + 1, the condition r↾ζ′ is (N,Pζ′)-

generic and it forces that r(ζ′) is (N [G
˜

Pζ′
],Q

˜
ζ′)-generic).

This ends the proof of Theorem A.3.10.

Remark A.3.11:

(1) In A.3.1 we may have S̄ = 〈Sa : a ∈ W 〉 and D̄ = 〈Da : a ∈ W 〉 be

such that each Da is a normal filter on λ, Sa ∈ D+
a satisfies the relevant

demands of A.3.2(1), and require that there is aDa diamond 〈F a
δ : δ ∈ Sa〉.

Then in all definitions and results we may replace D,S by Da, Sa, where

a = N∩A. In particular, this way we get the notions of fuzzy properness

over quasi D̄-diamonds which behave nicely in iterations.

(2) Everything in this section goes through if we skip “exact” (and deal

just with increasing sequences of conditions). There would be almost

no changes in the proof of the iteration theorem. The reason why we

add “exact” everywhere is in examples we have in mind: we do not know

how to show that (some of) the forcings built later are fuzzy-but-without-

exact proper. Exactness makes fuzzy properness a weaker condition as

(∃x ∈ Xδ)(qδ,x ≤ rδ) of A.3.4(5)(β) has to be fulfilled for somewhat more

special δ only. And with that our forcings are fuzzy proper, see §B.7.

B. Building suitably proper forcing notions

B.4. A creature–free example. In this section we show that a natural

forcing notion uniformizing colourings on ladder systems is fuzzy proper. (This

forcing is a relative of Q∗ from [16, 4.6–4.8].)

Here we assume that:

Context B.4.1:

(1) λ∗ > λ is a regular cardinal, A = H<λ(λ∗) and W ⊆ [A]λ is as in A.3.1,

and λ ⊆ a for each a ∈ W ,
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(2) ξ∗ < λ, S∗ is a stationary subset of Sλ+

λ

def
= {δ < λ+ : cf(δ) = λ} and for

β ∈ S∗:

(α) Bβ ⊆ β is a club of β of order type otp(Bβ) = λ,

(β) hβ : Bβ −→ ξ∗.

Let B̄ = 〈Bβ : β ∈ S∗〉, h̄ = 〈hβ : β ∈ S∗〉.

The forcing notion Q∗ = Q∗(S∗, B̄, h̄) is defined as follows:

a condition in Q∗ is a tuple p = (up, vp, ēp, hp) such that

(a) up ∈ [λ+]<λ, vp ∈ [S∗]<λ,

(b) ēp = 〈ep
β : β ∈ vp〉, where each ep

β is a closed bounded subset of Bβ , and

ep
β ⊆ up, and

(c) sup(ep
β) = sup(up ∩ β) (for β ∈ vp), and if β1 < β2 are from vp, then

sup(ep
β2

) > β1 and sup(ep
β1

) > sup(Bβ2 ∩ β1),

(d) hp: up −→ ξ∗ is such that

(∀β ∈ vp)(∀α ∈ ep
β)(hp(α) = hβ(α));

the order ≤ of Q∗ is such that p ≤ q if and only if up ⊆ uq, hp ⊆ hq, vp ⊆ vq,

and for each β ∈ vp the set eq
β is an end-extension of ep

β .

A tuple p = (up, vp, ēp, hp) satisfying clauses (a), (b) and (d) above will be

called a pre-condition. Note that every pre-condition can be extended to a

condition in Q∗.

Proposition B.4.2:

(1) The forcing notion Q∗ is (<λ)-complete, it satisfies the λ+-chain condition

and |Q∗| = λ+.

(2) If p ∈ Q∗, α < λ+, β ∈ S∗ and δ < λ, then there is a condition q ≥ p such

that

α ∈ uq, β ∈ vq and (∀β′ ∈ vq)(otp(eq
β′) > δ).

Proof:

(1) Verification of the chain condition is a straightforward application of the

∆-lemma. To check that Q∗ is (<λ)-complete suppose that 〈pi : i < j〉

is a ≤Q∗-increasing sequence of conditions from Q∗, j < λ. Let r =

(ur, vr, ēr, hr) be such that
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vr =
⋃

i<j

vpi , and for β ∈ vr

er
β =

⋃

{epi

β : β ∈ vpi&i < j} ∪ {sup(
⋃

{epi

β : β ∈ vpi&i < j})}

ur =
⋃

i<j

upi ∪
⋃

{er
β : β ∈ vr}

hr ⊇
⋃

i<j

hpi ,

and if α ∈ er
β \

⋃

{epi

β : β ∈ vpi , i < j}, then hr(α) = hβ(α). Using clause (c) for

pi’s one easily sees that r is a pre-condition. Extend it to a condition q ∈ Q∗.

(2) Should be clear.

Proposition B.4.3: Q∗ is fuzzy proper for W .

Proof: Suppose that D is a normal filter on λ such that there is a D-diamond.

We will show that Q∗ is fuzzy proper over quasi D-diamonds. First we define

a λ-base (R∗, Ȳ∗) for Q∗ over W . We let R∗ be the set of all triples (p, δ, x)

such that p ∈ Q∗, δ ∈ λ and x is a function with Dom(x) ⊆ up and (∀α ∈

Dom(x))(hp(α) = x(α)).

Now suppose that a ∈W and let πa be the <∗χ-first one-to-one mapping from

a ∩ λ+ to λ. For a limit ordinal δ < λ we put

xδ
0 = (πa)−1[δ] ∪ {α < λ+ : α = sup(α ∩ (πa)−1[δ])},

and then

Y∗a(δ) = {x : x is a function from xδ
0 ∩ a to ξ∗}.

For non-limit α < λ we put Y∗a(α) = {0}. This defines Y∗a and Ȳ∗ =

〈Y∗a : a ∈W 〉. It is easy to check that (R∗, Ȳ∗) is a λ-base for Q∗ (for A.3.3(c)

use repeatedly B.4.2). Assume now that

• N ≺ (H(χ),∈, <∗χ), |N | = λ, <λN ⊆ N , λ,Q∗, B̄, h̄, S∗,R∗ ∈ N , and

a
def
= N ∩A ∈ W , p ∈ Q∗ ∩N ,

• Ī = 〈Iξ : ξ < λ〉 lists all open dense subsets of Q∗ from N ,

• h: λ −→ N satisfies Q∗ ∩N ⊆ Rng(h), and

• F̄ = 〈Fδ : δ ∈ S〉 is a quasi D-diamond for (N, h,Q∗) and q̄ is a fuzzy

candidate over F̄ .

For limit δ ∈ S let Y(δ) = Y(N,Q∗, h, F̄ ,R∗, Ȳ∗, δ) be as defined in A.3.4(3)

(and thus q̄ = 〈qδ,x : δ ∈ S is limit &x ∈ Y(δ)〉). Also let E0 be the set of all

δ < λ which are limits of members of λ \ S (so it is a club of λ).
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We are going to show that the condition p is (R∗, Ȳ∗)-fuzzy generic for q̄.

Note that, as Q∗ satisfies the λ+-cc, the condition p is (N,Q∗)-generic (in the

standard sense). So, by A.3.8(3), it is enough to give a strategy of the Generic

player in the game a
fuzzy
λ (p,N, Ī, h,Q∗, F̄ , q̄) which guarantees that the result

〈ri, Ci : i < λ〉 of the play satisfies A.3.4(5)(β).

Suppose that we arrive to a stage δ ∈ S and 〈ri, Ci : i < δ〉 is the sequence

played so far. First, Generic picks the <∗χ-first condition r′δ stronger than all

ri’s played so far and such that

if δ is limit and (∃x ∈ Y(δ))(∃r ∈ Q∗)(qδ,x ≤ r&(∀i < δ)(ri ≤ r)),

then qδ,x ≤ r′δ for some x ∈ Y(δ).

Then she plays the <∗χ-first condition rδ above r′δ such that

(∗)1 if β ∈ vrδ , then otp(erδ

β ) > δ, and

(∗)2 (πa)−1[δ] ⊆ urδ and (πa)−1[δ] ∩ S∗ ⊆ vrδ .

The set Cδ played at this stage is (α, λ) ∩ E0, where α is the first ordinal such

that

(∗)3 πa[urδ ∩N ] ⊆ α, and the set

{q ∈ Q∗ : (πa)−1[δ] ⊆ uq&(πa)−1[δ] ∩ S∗ ⊆ vq&(∀β ∈ vq)(otp(eq
β) > δ)}

(which is an open dense subset of Q∗ from N ; remember B.4.2) is in

{Iξ : ξ < α},

(∗)4 otp(Bβ ∩ (sup(erδ

β ) + 1)) < α for all β ∈ vrδ ,

(∗)5 if β ∈ vrδ and a∩β\(sup(erδ

β )+1) 6= ∅, then there is γ ∈ a∩β\(sup(erδ

β )+1)

with πa(γ) < α.

Why does this strategy work (i.e., why does it ensure A.3.4(5)(β))?

Let 〈ri, Ci : i < λ〉 be a play according to this strategy, and suppose

that δ ∈ S ∩ △i<λ Ci is a limit ordinal such that 〈h ◦ Fδ(α) : α < δ〉 is

a ≤Q∗-increasing Ī-exact sequence of conditions from Q∗ ∩ N such that

(∀α < δ)(∃i < δ)(h ◦ Fδ(α) ≤ ri). Note that then

(∗)6 if β ∈
⋃

i<δ v
ri , then otp(

⋃

i<δ e
ri

β ) = δ and
⋃

i<δ e
ri

β is an unbounded

subset of {ε ∈ Bβ : otp(ε ∩Bβ) < δ}, and

(∗)7
⋃

i<δ u
ri ∩N = (πa)−1[δ] =

⋃

α<δ u
h◦Fδ(α) and

⋃

i<δ

vri ∩N = (πa)−1[δ] ∩ S∗ =
⋃

α<δ

vh◦Fδ(α),

(∗)8 if β ∈ (πa)−1[δ] ∩ S∗, then

⋃

{e
h◦Fδ(α)
β : α < δ&β ∈ vh◦Fδ(α)} =

⋃

{eri

β : i < δ&β ∈ vri}.
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We want to show that

(⊡) for some x ∈ Y(δ), there is a common upper bound to {ri : i < δ}∪{qδ,x}

(which, by the definition of our strategy, will finish the proof). For β ∈ S∗

let γβ ∈ Bβ be such that otp(Bβ ∩ γβ) = δ. Now, let a pre-condition r′ =

(ur′

, vr′

, ēr′

, hr′

) be such that

• vr′

=
⋃

i<δ v
ri , ur′

=
⋃

i<δ u
ri ∪ {γβ : β ∈ vr′

},

• er′

β =
⋃

{eri

β : i < δ&β ∈ vri} ∪ {γβ} (for β ∈ vr′

), and

• hr′

: ur′

−→ ξ∗ is such that
⋃

i<δ h
ri ⊆ hr′

and hr′

(γβ) = hβ(γβ).

One easily verifies that the above conditions indeed define a pre-condition (re-

member (∗)6). Also, note that if β ∈ vr′

, then γβ ∈ er′

β \
⋃

{eri

β : i < δ&β ∈ vri}

and each eri

β is a proper subset of
⋃

{eri

β : i < δ&β ∈ vri}. Moreover, if

β ∈ vr′

and γβ ∈ N , then γβ = sup(ur′

∩ N ∩ γβ) = sup((πa)−1[δ] ∩ γβ) (by

(∗)5 + (∗)2; remember also (∗)7). Now, extend r′ to a pre-condition r′′ such

that ur′′

= ur′

∪ xδ
0, vr′′

= vr′

and er′′

β = er′

β for β ∈ vr′′

(clearly possible).

Let x = hr′′

↾xδ
0 (note that xδ

0 ⊆ a). Since r′′ is stronger than all h ◦ Fδ(α) (for

α < δ), any condition stronger than r′′ witnesses that x ∈ Y(δ). Now we put

• u∗ = uqδ,x ∪ ur′′

, v∗ = vqδ,x ∪ vr′′

, h∗ = hqδ,x ∪ hr′′

,

• if β ∈ vqδ,x , then e∗β = e
qδ,x

β , and if β ∈ vr′′

\N , then e∗β = er′′

β .

Note that h∗ is a function from u∗ to ξ∗ by (∗)7 (remember the choice of x

and that qδ,x ∈ N is stronger than all h ◦ Fδ(α)’s). Also, if β ∈ vr′′

∩ N then

(β ∈ vqδ,x and) e
qδ,x

β is an end-extension of er′′

β (remember (∗)7 + (∗)8). Hence

(u∗, v∗, ē∗, h∗) is a pre-condition stronger than both qδ,x and r′′. Extending it

to a condition in Q∗ we conclude (⊡), thus completing the proof of B.4.3.

Corollary B.4.4: Assume that λ is a strongly inaccessible cardinal, 2λ = λ+,

2λ+

= λ++ and D is a normal filter on λ such that there is a D-diamond. Then

there is a forcing notion P such that:

• P is (<λ)-complete weakly fuzzy proper over quasi D-diamonds for W and

it satisfies the λ++-cc,

• in VP, 2λ = 2λ+

= λ++ and for every ξ∗, S∗, B̄, h̄ as in B.4.1(2) there is

h: λ++ −→ ξ∗ such that for every β ∈ S∗ the set

{α ∈ Bβ : hβ(α) = h(α)}

contains a club.

Proof: The forcing notion P is the limit Pλ++ of a λ-support iteration Q̄ =

〈Pα,Q
˜

α : α < λ++〉, where each Q
˜

α is forced to be Q∗(Sλ+

λ , B̄
˜

α, h̄
˜

α) for some
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B̄
˜

α, h̄
˜

α. Then, by A.1.10, A.3.10 and B.4.3 we are sure that P satisfies the λ++-

cc, it is weakly fuzzy proper over quasi D-diamonds for W and it has a dense

subset of size λ++. Consequently we may arrange suitable bookkeeping to take

care of all Pλ++-names B̄
˜
, h̄
˜

for objects as in B.4.1(2) — the details and the rest

should be clear.

B.5. Trees and creatures. Let us introduce the notation used in the

forcing notions we want to build. The terminology here is somewhat parallel to

that of [15, §1.2, §1.3], but there are some differences as the context is different.

We start with the tree case.

Definition B.5.1: Let H: λ −→ H(λ+).

(1) A λ-tree creature for H is a tuple

t = (η,dis,pos,nor) = (η[t],dis[t],pos[t],nor[t])

such that dis ∈ H(λ+), nor ∈ λ+ 1,

η ∈
⋃

α<λ

∏

β<α

H(β), and ∅ 6= pos ⊆

{

ν ∈
⋃

α<λ

∏

β<α

H(β) : η ⊳ ν

}

.

TCRλ[H] is the family of all λ-tree creatures for H.

For η ∈
⋃

α<λ

∏

β<α H(β) we let TCRλ
η [H] = {t ∈ TCRλ[H] : η[t] = η}.

(2) Let K ⊆ TCRλ[H]. A tree-composition operation on K is a mapping

Σ with values in P(K) and the domain consisting of systems 〈tν : ν ∈ T̂ 〉

such that

• T is a complete λ-quasi tree of height ht(T ) < λ, T̂ = T \ max(T ),

• for each ν ∈ T̂ , tν ∈ K satisfies ν = η[tν ] and succT (ν) = pos[tν ],

and

• if t ∈ Σ(tν : ν ∈ T̂ ), then η[t] = root(T ) and pos[t] ⊆ max(T ),

• if t ∈ Σ(tν : ν ∈ T̂ ) and tν ∈ Σ(sν
ρ : ρ ∈ T̂ν) (for ν ∈ T̂ ), then

t ∈ Σ(sν
ρ : ρ ∈

⋃

ν∈T̂ T̂ν), and

• for each t ∈ K we have 〈t〉 ∈ Dom(Σ) and t ∈ Σ(t).

Then (K,Σ) is called a λ-tree creating pair (for H).

(3) A λ-tree creating pair (K,Σ) is local if

• (tν : ν ∈ T ) ∈ Dom(Σ) implies ht(T ) = lh(root(T )) + 1 (and so

T = {root(T )} ∪ pos[troot(T )]), and

• t′ ∈ Σ(t) implies nor[t′] ≤ nor[t].

We say that (K,Σ) is very local if, additionally, for every

ν ∈
⋃

α<λ

∏

β<α

H(β)
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such that K ∩ TCRλ
ν [H] 6= ∅ there is t∗ν ∈ K ∩ TCRλ

ν [H] satisfying

(∀t ∈ K ∩ TCRλ
ν [H])(t ∈ Σ(t∗ν)). The tree creature t∗ν may be called

the minimal creature at ν.

(4) If (K,Σ) is a very local λ-tree creating pair, then the minimal tree T ∗

for (K,Σ) and the minimal condition p∗ for (K,Σ) are defined by

T ∗ = T ∗(K,Σ)

= {η ∈
⋃

α<λ

∏

β<λ

H(β) : (∀α < lh(η))(η↾(α+ 1) ∈ pos[t∗η↾α])}

p∗ = p∗(K,Σ) = 〈t∗ν : ν ∈ T ∗〉.

(Note that, in the general case, T ∗ could be of small height, but in real

applications this does not happen.)

Definition B.5.2: Let (K,Σ) be a λ-tree creating pair for H.

(1) We define the forcing notion Qtree
1 (K,Σ) by:

conditions are systems p = 〈tη : η ∈ T 〉 such that

(a) ∅ 6= T ⊆
⋃

α<λ

∏

β<α H(β) is a complete λ-quasi tree with

max(T ) = ∅,

(b) tη ∈ TCRλ
η [H] ∩K and pos[tη] = succT (η),

(c)1 for every η ∈ limλ(T ), lim(nor[tη↾α] : α < λ, η↾α ∈ T ) = λ;

the order is given by:

〈t1η : η ∈ T 1〉 ≤ 〈t2η : η ∈ T 2〉 if and only if

T 2 ⊆ T 1 and for each η ∈ T 2 there is a complete λ-quasi tree T0,η ⊆ (T 1)[η]

of height ht(T0,η) < λ such that t2η ∈ Σ(t1ν : ν ∈ T̂0,η).

If p = 〈tη : η ∈ T 〉 then we write root(p) = root(T ), T p = T , tpη = tη

etc.

(2) Let D∗ be a filter on λ. The forcing notion Qtree
D∗ (K,Σ) is defined similarly,

replacing the condition (c)1 by

(c)D∗ for some set Y = Y p ∈ D∗ we have

(∀δ ∈ Y )(∀η ∈ (T )δ)(nor[tη] ≥ |δ|).

(The set Y p above may be called a witness for p ∈ Qtree
D∗ (K,Σ).)

(3) The forcing notion Qtree
cl (K,Σ) is defined by replacing the condition (c)1

by

(c)cl (α) (∀η ∈ T )(∃ν ∈ T )(η ⊳ ν&nor[tν ] ≥ | lh(ν)|), and

(β) (∀η ∈ T )(nor[tη] = 0 or nor[tη] ≥ | lh(η)|), and

(γ) nor[troot(p)] ≥ | lh(root(p))|, and
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(δ) if δ < λ is a limit ordinal and 〈ηi : i < δ〉 ⊆ T is a ⊳-

increasing sequence such that nor[tηi
] ≥ | lh(ηi)| for each i < δ

and η =
⋃

i<δ ηi, then (η ∈ T and) nor[tη] ≥ | lh(η)|.

(4) If e ∈ {1, D∗, cl}, p ∈ Qtree
e (K,Σ) and η ∈ T p, then we let

p[η] = 〈tpν : ν ∈ (T p)[η]〉.

(5) For the sake of notational convenience we define partial order Qtree
∅ (K,Σ)

in the same manner as Qtree
e (K,Σ) above but we omit the requirement

(c)e.

Definition B.5.3: Let (K,Σ) be a λ-tree creating pair for H, t ∈ K. We define

a relation �t
Σ on Σ(t) by

t′ �t
Σ t′′ if and only if (t′, t′′ ∈ Σ(t) and) t′′ ∈ Σ(t′).

If (K,Σ) is very local, t∗ν is the minimal creature at ν, then �
t∗ν
Σ is also denoted

by �ν
Σ.

Remark B.5.4:

(1) Note that the relation �t
Σ is transitive and reflexive.

(2) If (K,Σ) is local and p ∈ Qtree
∅ (K,Σ), then T p is a complete λ-tree.

Now we are going to describe the non-tree case of forcing with creatures. For

sake of simplicity we restrict ourselves to what corresponds to forgetful creatures

of [15, 1.2.5].

Definition B.5.5: Let H: λ −→ H(λ+).

(1) A forgetful λ-creature for H is a tuple

t = (αdn, αup,dis,val,nor) = (αdn[t], αup[t],dis[t],val[t],nor[t])

such that dis ∈ H(λ+), nor ∈ λ + 1, αdn < αup < λ and ∅ 6= val ⊆
∏

αdn≤β<αup
H(β).

CRλ[H] is the family of all forgetful λ-creatures for H.

Since we will consider only forgetful λ-creatures, from now on we will

omit the adjective “forgetful”.

(2) Let K ⊆ CRλ[H]. A composition operation on K is a mapping Σ with

values in P(K) and the domain consisting of systems 〈ti : i < j〉 ⊆ K such

that j < λ and

αup[ti] = αdn[ti+1] for i < i+ 1 < j, and

sup{αup[ti′ ] : i′ < i} = αdn[ti] for limit i < j,
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and if t ∈ Σ(ti : i < j), then

• α− = αdn[t] = αdn[t0], α+ = αup[t] = sup{αup[ti] : i < j}, and

• val[t] ⊆ {ν ∈
∏

α−≤β<α+

H(β) : (∀i < j)(ν↾[αdn[ti], αup[ti]) ∈ val[ti])},

and

• if ti ∈ Σ(si
ζ : ζ < ζi) (for i < j) and t ∈ Σ(ti : i < j),

then t ∈ Σ(si
ζ : ζ < ζi, i < j), and

• for each t ∈ K we have 〈t〉 ∈ Dom(Σ) and t ∈ Σ(t).

Then (K,Σ) is called a λ-creating pair (for H).

(3) We say that (K,Σ) is local if for each t ∈ K

• αup[t] = αdn[t] + 1 , and

• t′ ∈ Σ(t) implies nor[t′] ≤ nor[t].

It is very local if, additionally, for each α < λ there is t∗α ∈ K such that

αdn[t∗α] = α and for every t ∈ K with αdn[t] = α we have t ∈ Σ(t∗α). The

creature t∗α will be called the minimal creature t∗α at α.

(4) For j < λ, a j-approximation for (K,Σ) is a pair (w, 〈ti : i < j〉) such

that ti ∈ K,

αup[ti] = αdn[ti+1] for i < i+ 1 < j, and

sup{αup[ti′ ] : i′ < i} = αdn[ti] for limit i < j,

and w ∈
∏

α<αdn[t0]
H(α).

(5) For a j-approximation (w, 〈ti : i < j〉) for (K,Σ) we let

pos(w, 〈ti : i < j〉) =
{

v ∈
∏

α<α∗

H(α) :w ⊳ v and for all i < j

v↾[αdn[ti], αup[ti]) ∈ val[ti]
}

,

where α∗ = sup{αup[ti] : i < j}.

Definition B.5.6: Let (K,Σ) be a λ-creating pair for H.

(1) We define the forcing notion Q∗1(K,Σ):

conditions are pairs p = (w, t̄) such that

(a) t̄ = 〈ti : i < λ〉 is a sequence of λ-creatures from K satisfying

αup[ti] = αdn[ti+1] for i < i+ 1 < λ, and

sup{αup[ti′ ] : i′ < i} = αdn[ti] for limit i < λ,

(b) w ∈
∏

α<αdn[t0] H(α)

(c)1 lim(nor[ti] : i < λ) = λ
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the order is given by:

(w1, 〈t1i : i < λ〉) ≤ (w2, 〈t2i : i < λ〉 if and only if

for some continuous strictly increasing sequence 〈iζ : ζ < λ〉 we have

w2 ∈ pos(w1, 〈t1i : i < i0〉) and (∀ζ < λ)(t2ζ ∈ Σ(t1i : iζ ≤ i < iζ+1)).

If p = (w, 〈ti : i < λ〉), then we write wp = w, tpi = ti (for i < λ).

(2) Let D∗ be a filter on λ. The forcing notion Q∗D∗(K,Σ) is defined similarly,

replacing the condition (c)1 by

(c)D∗ for some set Y = Y p ∈ D∗ we have

(∀i ∈ Y )(nor[ti] ≥ |αdn[ti]|).

(The set Y p above may be called a witness for p ∈ Q∗D∗(K,Σ).)

(3) For the sake of notational convenience we define partial order Q∗∅(K,Σ)

in the same manner as Q∗e(K,Σ) above but we omit the requirement (c)e.

If (K,Σ) is very local, then the minimal condition p∗ for (K,Σ) is

p∗ = p∗(K,Σ) = (〈〉, 〈t∗α : α < λ〉) ∈ Q∗∅(K,Σ),

where t∗α is the minimal creature at α.

(4) The relations �t
Σ and �

t∗α
Σ =�α

Σ are defined in a way parallel to B.5.3.

B.6. Getting completeness and bounding properties. In this section

we introduce properties of λ-tree creating pairs ensuring that the resulting forc-

ing notions are complete or strategically complete. Next we show that adding

bounds on the size of H(α) guarantees strong bounding properties from Section

A.2. Finally we will introduce parallel completeness conditions for the case of

λ-creating pairs.

Definition B.6.1: Let (K,Σ) be a λ-tree creating pair for H, κ be a cardinal

(and λ, λ̄ be as in 0.3).

(1) We say that a λ-tree creature t ∈ K is (<κ)-complete (for (K,Σ)) if

(α) for every �t
Σ-increasing chain 〈tα : α < δ〉 ⊆ Σ(t) with δ < κ and

nor[tα] > 0, there is tδ ∈ Σ(t) such that (∀α < δ)(tα �t
Σ tδ) and

nor[tδ] ≥ min{nor[tα] : α < δ},

(β) if t′ ∈ Σ(t), nor[t′] = 0, then |pos[t′]| = 1 and Σ(t′) = {t′},

(γ) if ν ∈ pos[t], then there is t′ ∈ Σ(t) such that pos[t′] = {ν} and

nor[t′] = 0.

(2) t ∈ K is said to be exactly (<κ)-complete if it is (<κ)-complete and
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(⊗) if t̄ = 〈tα : α < κ〉 ⊆ Σ(t) is a strictly �t
Σ-increasing chain, then t̄

has no �t
Σ-upper bound in Σ(t), but

⋂

α<κ pos[tα] 6= ∅.

(3) We say that (K,Σ) is λ̄-complete (exactly λ̄-complete, respectively) if

(a) (K,Σ) is very local, and

(b)λ̄ each minimal creature t∗ν is (<λ+
lh(ν))-complete (exactly (<λlh(ν))-

complete, respectively).

We say that (K,Σ) is just (<λ)-complete if it satisfies (a) above and

(b)λ each minimal creature t∗ν is (<λ)-complete.

Proposition B.6.2: Assume that (K,Σ) is a very local λ-tree creating pair

for H, D∗ is a <λ-complete uniform filter on λ. Let P be one of the forcing

notions Qtree
1 (K,Σ), Qtree

D∗ (K,Σ), or Qtree
cl (K,Σ).

(1) If (K,Σ) is λ̄-complete, then P is strategically (<λ)-complete.

(2) If (K,Σ) is just (<λ)-complete, then P is (<λ)-complete.

(3) If (K,Σ) is exactly λ̄-complete, then P is (<λ)-complete.

Proof: (1) Let P ∈ {Qtree
1 (K,Σ),Qtree

D∗ (K,Σ),Qtree
cl (K,Σ)} and let r ∈ P. Con-

sider the following strategy st of Complete in the game aλ
0 (P, ∅, r). At stage

j < λ of the game, after a sequence 〈(pi, qi) : i < j〉⌢〈pj〉 ⊆ P has been con-

structed (so pj is the jth inning of Incomplete), she plays the <∗χ-first condition

qj ∈ P stronger than pj and such that lh(root(qj)) > j + ω.

Why is this a winning strategy? Suppose that the players have arrived at a

limit stage δ < λ of the game, Complete has used st and 〈(pi, qi) : i < δ〉 is the

result of the game so far. Our aim is to show that the (increasing) sequence

〈qi : i < δ〉 has an upper bound in P. To this end we are going to define a

condition q = 〈tη : η ∈ T 〉 ∈ P inductively defining (T )α and tη for α < λ,

η ∈ (T )α. First we declare root(T ) =
⋃

i<δ root(qi) and we note that

root(T ) ∈
⋂

i<δ

T qi and δ ≤ lh(root(T )) < λ+
lh(root(T )).

Now we may choose troot(T ) ∈ TCRλ
root(T )[H] so that troot(T ) ∈ Σ(tqi

root(T ))

(for all i < δ) and nor[troot(T )] ≥ min{nor[tqi

root(T )] : i < δ}, and we declare

pos[troot(T )] ⊆ T (thus defining (T )lh(root(T ))+1). Next we proceed inductively

in a similar manner: suppose that (T )α has been already defined and it is

included in
⋂

i<δ T
qi . For each η ∈ (T )α choose tη such that

(∀i < δ)(tη ∈ Σ(tqi
η )) and nor[tη] ≥ min{nor[tqi

η ] : i < δ},

and declare pos[tη] ⊆ T . (So after this step (T )α+1 is defined.) If α < λ is limit

and (T )β has been defined for β < α, then we let (T )α consist of all sequences
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η ∈
∏

β<α H(β) such that η↾β ∈ (T )β whenever lh(root(T )) ≤ β < α, and then

we choose tη (for η ∈ (T )α) like above.

This way we build a condition 〈tη : η ∈ T 〉 ∈ Qtree
∅ (K,Σ), and it is very

straightforward to verify that this condition is actually in P and is stronger

than all qi (for i < δ).

(2), (3) Similar.

The exact λ̄-completeness may seem to be very strange and/or strong. But

as a matter of fact it is easy to modify any λ̄-complete λ-tree creating pair to

one that is exactly complete (and the respective forcing notions are very close).

Definition B.6.3: Let (K,Σ) be a very local λ̄-complete λ-tree creating pair for

H. We define the λ̄-exactivity (Kex(λ̄),Σex(λ̄)) of (K,Σ) as follows.

Let η ∈
⋃

α<λ

∏

β<α H(β). We let Kex(λ̄) ∩ TCRλ
η [H] consist of all λ-tree

creatures t such that

• η[t] = η,

• dis[t] = 〈tξ : ξ ≤ δ〉, where t0 = t∗η is the minimal creature at η for (K,Σ),

δ < λlh(η), and ξ < ζ ≤ δ ⇒ tξ �η
Σ tζ&tξ 6= tζ ,

• pos[t] = pos[tδ],

• nor[t] = min{nor[tξ] : ξ ≤ δ}.

Then, for t′, t ∈ Kex(λ̄) ∩ TCRλ
η [H] we let t′ ∈ Σex(λ̄)(t) if and only if dis[t] E

dis[t′].

Proposition B.6.4: Assume (K,Σ) is a very local λ̄-complete λ-tree creating

pair. Then (Kex(λ̄),Σex(λ̄)) is a very local exactly λ̄-complete λ-tree creating

pair. The minimal creature for it at η is t∗∗η such that dis[t∗∗η ] = 〈t∗η〉.

Proof: Easy.

Theorem B.6.5: Suppose that

(a) (∀α < λ)(|H(α)| < λα), and

(b) (K,Σ) is a µ̄-complete very local λ-tree creating pair for H for some strictly

increasing sequence µ̄ = 〈µα : α < λ〉 of regular cardinals such that µα < λ

(for α < λ), and

(c) D∗ is a normal filter on λ.

Then the forcing notion Qtree
D∗ (K,Σ) has the strong λ̄-Sacks property

Proof: Let i0 < λ and p ∈ Qtree
D∗ (K,Σ). Just for notational simplicity we

assume that H(α) ∈ λα for all α < λ and lh(root(p)) ≤ i0. We are going to
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describe a strategy for Generic in the game aSacks
λ̄

(i0, p,Q
tree
D∗ (K,Σ)). In the

course of the play she will also choose sets Yi+1 ∈ D∗ and λ-tree creatures tν .

First Generic picks η ∈ T p such that lh(η) > i0 and she starts the game with

playing si0 = {η↾(i0 +1)} and qi0
η↾(i0+1) = p[η]. She also picks tη↾i0 ∈ Σ(tp

η↾(i0+1))

such that pos[tη↾(i0+1)] = {η↾(i0 + 1)} (remember B.6.1(1)(γ)).

Arriving at a successor stage j = i+1 of the play the players have determined

si, q̄
i, p̄i and Yi so that, in addition to the demands of the game, for each η ∈

si ∩ i+1λ we have η E root(qi
η). Now for each η ∈ si ∩ i+1λ Generic picks

νη ∈ T pi
η strictly extending η and she plays

si+1 = si ∪ {νη↾(i+ 2) : η ∈ si}, qi+1
νη↾(i+2) = (pi

η)[νη ] for η ∈ si ∩
i+1λ.

She also fixes a set Yi+1 ∈ D∗ of limit ordinals included in
⋂

η∈si
Y

q
i+1
νη↾(i+2) (recall

B.5.2(2)) and for η ∈ si ∩ i+1λ she lets tη ∈ Σ(tpη) be such that pos[tη] = {νη}.

Now suppose that the players have arrived to a limit stage δ < λ of the game,

and assume that δ /∈
⋂

i<δ Yi+1. Generic lets s∗δ consist of all sequences η of

length δ such that η↾(i + 1) ∈ si whenever i0 ≤ i < δ. For each η ∈ s∗δ she first

picks a condition rη stronger than all pi
η↾(i+1) for i0 ≤ i < δ (there is one by

arguments as in the proof of B.6.2(1)) and then she chooses νη ∈ T rη strictly

extending η. Then she plays

sδ = s∗δ ∪ {νη↾(δ + 1) : η ∈ s∗δ}, qδ
νη↾(δ+1) = (rη)[νη] for η ∈ s∗δ .

The λ-tree creatures tη (for η ∈ s∗δ) are chosen as above: tη ∈ Σ(tpη), pos[tη] =

{νη}.

Finally suppose that we are at a limit stage δ < λ of the game and δ ∈
⋂

i<δ Yi.

Let s∗δ be defined as above and for each η ∈ s∗δ let rη be a condition stronger

than all pi
η↾(i+1) for i0 ≤ i < δ and such that root(rη) = η and nor[t

rη
η ] ≥ |δ|

(there is one by arguments as in the proof of B.6.2(1) and the choice of the Yi’s).

Then she plays

sδ = s∗δ ∪
⋃

{pos[trη
η ] : η ∈ s∗δ}, qδ

ν = (rη)[ν] for ν ∈ pos[trη
η ], η ∈ s∗δ .

She also lets tη = t
rη
η ∈ Σ(tpη) (for η ∈ s∗δ).

It should be clear that the strategy described above always tells Generic to

play legal moves (remember 0.3(c)). It should also be clear that if 〈(si, q̄
i, p̄i) :

i0 ≤ i < λ〉 is the result of a play of aSacks
λ̄

(i0, p,Q
tree
D∗ (K,Σ)) in which Generic

uses that strategy, then letting T =
⋃

{si : i0 ≤ i < λ} and q = 〈tη : η ∈ T 〉 we

get a condition in Qtree
D∗ (K,Σ) (as witnessed by △i<λ Yi+1) stronger than p and
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forcing that

“(∃ρ ∈ λλ)(∀i ∈ [i0, λ))(ρ↾(i+ 1) ∈ si&q
i
ρ↾(i+1) ∈ ΓQtree

D∗ (K,Σ))”.

Theorem B.6.6: Assume that (∀α < λ)(|H(α)| < λ), and (K,Σ), D∗ satisfy

(b), (c) of B.6.5. Then the forcing notion Qtree
D∗ (K,Σ) has the strong λ-bounding

property.

Proof: Similar to B.6.5.

The above two theorems are applicable to forcing notions of the type

Qtree
cl (K,Σ) as they may be treated as a special case (under the assumptions

as there):

Proposition B.6.7: Assume that (∀α < λ)(|H(α)| < λ) and (K,Σ) is a µ̄-

complete very local λ-tree creating pair for H (for some strictly increasing µ̄).

Then the forcing notions Qtree
cl (K,Σ) and Qtree

Dλ
(K,Σ) are equivalent.

Turning to the case of λ-creating pairs (and forcing notions of the form

Q∗e(K,Σ)), we have easy ways to ensure they are suitably complete (parallel

to B.6.1, B.6.2).

Definition B.6.8:

(1) For a λ-creating pair (K,Σ) and t ∈ K we define when t is (<κ)-complete

and exactly (<κ)-complete like in B.6.1(1,2) (but with val replacing

pos).

(2) If (K,Σ) is very local, then we say that it is λ̄-complete (exactly λ̄-

complete, respectively) if each minimal creature t∗α is (<λ+
α )-complete

(exactly (<λα)-complete, respectively).

Proposition B.6.9: Assume that (K,Σ) is a very local λ-creating pair for

H, D∗ is a normal filter on λ. Let P be either the forcing notion Q∗1(K,Σ) or

Q∗D∗(K,Σ).

(1) If (K,Σ) is λ̄-complete, then P is strategically (<λ)-complete.

(2) If (K,Σ) is exactly λ̄-complete, then P is (<λ)-complete.

More results on strong bounding properties for forcing notions determined by

λ-creating pairs will be presented in [14].

B.7. Getting fuzzy properness. In this section we show that the forcing

notions with trees and creatures may fit the fuzzy proper framework. Note that

even though the forcing notions covered by Theorems B.7.2 and B.7.3 below are
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also covered by Theorem B.6.6, the results here still have value if we want to

iterate that forcing notions with ones which do not have the strong λ-bounding

property. Here we assume the following:

Context B.7.1:

(1) λ, λ̄ are as in 0.3,

(2) λ∗, A = H<λ(λ∗),W,D are as in A.3.1,

(3) µ̄ = 〈µα : α < λ〉 is an incresing sequence of cardinals cofinal in λ and

such that α < µα for α < λ.

Theorem B.7.2: Let D∗ be a normal filter on λ such that for some S0 ∈ D∗

we have λ \ S0 ∈ D. Assume that (K,Σ) is an exactly µ̄-complete very local

λ-tree creating pair for H, and |H(α)| < λ for each α < λ. Then the forcing

notion Qtree
D∗ (K,Σ) is strongly fuzzy proper over quasi D-diamonds for W .

Proof: By B.6.2 we know that Qtree
D∗ (K,Σ) is (<λ)-complete.

Let Rtr, Ȳtr be the trivial λ-base defined as in the proof A.3.9 (but for P =

Qtree
D∗ (K,Σ)). We are going to show that for this λ-base and for c = (λ̄,K,Σ)

the condition A.3.6(2)((⊛)+) holds. So assume that N, h, F̄ = 〈Fδ : δ ∈ S〉 and

q̄ = 〈qδ,x : δ ∈ S limit &x ∈ Xδ〉 are as there and p ∈ Qtree
D∗ (K,Σ)∩N . Note that

Xδ = {0} (for all relevant δ) and thus we may think that q̄ = 〈qδ : δ ∈ S limit〉.

Let Ī = 〈Iξ : ξ < λ〉 list all open dense subsets of Qtree
D∗ (K,Σ) from N .

For i < λ let ξi be such that Iξi
consist of conditions p ∈ Qtree

D∗ (K,Σ) with

lh(root(p)) > i, and let E be a club of λ such that

(∀δ ∈ E)(∀i < δ)(δ is limit and ξi < δ).

By induction on α < λ choose conditions pα ∈ Qtree
D∗ (K,Σ)∩N and sets Yα ∈ D∗

such that

(i) p0 = p, root(pα) = root(p), and pα ≤ pβ and Yβ ⊆ Yα ⊆ S0 for α < β < λ,

(ii) Yα witnesses pα ∈ Qtree
D∗ (K,Σ) (see B.5.2(2)),

(iii) for every α < β < λ and ν ∈ (T pα)α we have ν ∈ T pβ and tpα
ν = t

pβ
ν ,

(iv) if α < λ is a successor, ξ < α and η ∈ (T pα)α, then for some ν ∈ (T pα)[η]

we have: (pα)[ν] ∈ Iξ and (∀ρ ∈ T pα)(η E ρ ⊳ ν ⇒ nor[tpα
ρ ] = 0),

(v) if δ ∈
⋂

α<δ Yα is a limit ordinal, then δ ∈ Yβ for every β ≥ δ,

(vi) if δ ∈ S ∩ E \ S0 and 〈h ◦ Fδ(i) : i < δ〉 is an increasing Ī-exact sequence

of members of N ∩ Qtree
D∗ (K,Σ) such that

(∀α < δ)(∃i < δ)(pα ≤ h ◦ Fδ(i)),
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and η ∈ (T pδ )δ is such that every h◦Fδ(i) is compatible with (pδ)[η], then

(pδ)[η] ≤ qδ = (pδ)[root(qδ)] and

(∀ρ ∈ T pδ)(η E ρ ⊳ root(qδ) ⇒ nor[tpδ
ρ ] = 0).

(Note that there is at most one η as above; remember the choice of E.)

It should be clear that the inductive construction of the pα’s and Yα’s is possible

(for (v) remember δ < µδ; note also that there is no collision between (v) and

(vi) because Yα ⊆ S0). Now letting root(r) = root(p), T r =
⋃

α<λ(T pα)α,

trν = t
plh(ν)+1
ν we get a condition r ∈ Qtree

D∗ (K,Σ) (as witnessed by △α<λ Yα).

Also note that r is stronger than all pα’s.

Claim B.7.2.1: The condition r is (Rtr, Ȳtr)-fuzzy generic for q̄.

Proof of the Claim: First note that the condition r is (N,Qtree
D∗ (K,Σ))-generic

by clause (iv) above. Therefore we may use A.3.8(3), and it is enough that we

show that Generic has a strategy in the game a
fuzzy
λ (r,N, Ī, h,Qtree

D∗ (K,Σ), F̄ , q̄)

which guarantees that the result 〈ri, Ci : i < λ〉 of the play satisfies A.3.4(5)(β).

Let us describe such a strategy.

First, for α < λ let ζα < λ be such that

(∀q ∈ Iζα
)( either pα ≤ q or pα, q are incompatible),

and let E′ = {δ ∈ E : (∀α < δ)(ζα < δ)} (it is a club of λ).

Now, suppose that during a play of a
fuzzy
λ (r,N, Ī, h,Qtree

D∗ (K,Σ), F̄ , q̄) the

players have arrived at stage i ∈ S having constructed a sequence 〈rj , Cj : j < i〉.

If either i is a successor ordinal or i /∈
⋂

j<i Cj , then the Generic player

plays the <∗χ-first condition ri ∈ Qtree
D∗ (K,Σ) such that (∀j < i)(rj ≤ ri) and

lh(root(ri)) > i, and the set Ci = E′ \ (S0 ∪ lh(root(ri))).

If i ∈
⋂

j<i Cj is a limit ordinal (so also i ∈ E′ \ S0), then Generic asks

(∗) is 〈h ◦ Fi(α) : α < i〉 an increasing Ī-exact sequence such that

(∀j < i)(∃α < i)(pj ≤ h ◦ Fi(α))?

If the answer to (∗) is “no”, then she plays like at the successor stage.

(Note that if the answer to (∗) is “no” and 〈h ◦ Fi(α) : α < i〉 is increasing

Ī-exact, then for some j < i and α < i the conditions pj and h ◦ Fi(α) are

incompatible, and hence ri and h ◦ Fi(α) are incompatible.)

If the answer to (∗) is “yes”, then Generic looks at clause (vi) (of the choice of

pα’s) and η =
⋃

j<i root(rj) (note that lh(η) = i). If (pi)
[η] is incompatible with

some h ◦ Fi(α), α < i, then she plays Ci, ri as in the successor case.
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(Note that then ri, h ◦ Fi(α) are incompatible.)

Otherwise η E root(qi) ∈ T pi , qi = (pi)
[root(qi)] and (∀ρ ∈ T pi)(η E ρ ⊳

root(qi) ⇒ |pos[tpi
ρ ]| = 1). Therefore, root(qi) ∈ T rj and qi ≤ (rj)[root(qi)] (for

each j < i). So Generic can put Ci = E′ \ i and the <∗χ-first condition ri

stronger than all rj (for j < i) and qi.

It follows immediately from the comments stated during the description of

the strategy that every play according to it satisfies A.3.4(5)(β), finishing the

proof of the claim.

This finish the proof of Theorem B.7.2.

Theorem B.7.3: Let D∗ be a normal filter on λ such that for some S0 ∈ D∗

we have λ \ S0 ∈ D. Assume that (K,Σ) is an exactly λ̄-complete very local

λ-creating pair for H, |H(α)| < λ for each α < λ. Then the forcing notion

Q∗D∗(K,Σ) is strongly fuzzy proper over quasi D-diamonds for W .

Proof: The proof is the same as the proof of Theorem B.7.2.

Theorem B.7.4: Suppose that (K,Σ) is an exactly µ̄-complete very local λ-

tree creating pair for H, (∀α < λ)(|H(α)| < λ), and D∗ is a normal filter on λ.

Then the forcing notion Qtree
D∗ (K,Σ) is fuzzy proper for W .

Proof: The proof closely follows the lines of that of B.7.2. Let D be a normal

filter on λ such that there is a D-diamond.

Just only to simplify somewhat the definition of a λ-base which we will use, let

us assume that
⋃

δ<λ

∏

α<δ H(α) ⊆ a for every a ∈ W . Now we let R = R(K,Σ)

consist of all triples (p, δ, η) such that δ < λ, η ∈
∏

α<δ H(α) and p ∈ Qtree
D∗ (K,Σ)

satisfies η ⊳ root(p). Next, for a ∈W let Ya = Ya(K,Σ): λ −→ [a]<λ be given

by Ya(δ) =
∏

α≤δ H(α) ⊆ a (for δ < λ). It should be clear that (R, Ȳ) is a

λ-base for Qtree
D∗ (K,Σ) over W .

We claim that (R, Ȳ) and c = (λ̄,H,K,Σ) witness the condition (⊛) of

A.3.6(1). To this end, let N, h, F̄ = 〈Fδ : δ ∈ S〉 and q̄ = 〈qδ,x : δ ∈ S limit &x ∈

Xδ〉 be as in A.3.6(1)(⊛), p ∈ Qtree
D∗ (K,Σ)∩N . Let Ī = 〈Iξ : ξ < λ〉 list all open

dense subsets of Qtree
D∗ (K,Σ) from N . For i < λ let ξi be such that Iξi

consist of

conditions p ∈ Qtree
D∗ (K,Σ) with lh(root(p)) > i, and let E be a club of λ such

that

(∀δ ∈ E)(∀i < δ)(δ is limit and ξi < δ).

By induction on α < λ, like in B.7.2 (but note the change in (vi) below!), we

choose conditions pα ∈ Qtree
D∗ (K,Σ) ∩N and sets Yα ∈ D∗ such that
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(i) p0 = p, root(pα) = root(p), and pα ≤ pβ and Yβ ⊆ Yα for α < β < λ,

(ii) Yα witnesses pα ∈ Qtree
D∗ (K,Σ),

(iii) for every α < β < λ and ν ∈ (T pα)α we have ν ∈ T pβ and tpα
ν = t

pβ
ν ,

(iv) if α < λ is a successor ordinal and η ∈ (T pα)α, then for some ν ∈ (T pα)[η]

we have: (pα)[ν] ∈
⋂

ξ<α Iξ and (∀ρ ∈ T pα)(η E ρ ⊳ ν ⇒ nor[tpα
ρ ] = 0),

(v) if δ ∈
⋂

α<δ Yα is a limit ordinal, then δ ∈ Yβ for every β ≥ δ,

(vi) if δ ∈ S∩E, 〈h◦Fδ(i) : i < δ〉 is increasing Ī-exact, η =
⋃

i<δ root(h◦Fδ(i))

and lh(η) = δ, and (∀α < δ)(∃i < δ)(pα ≤ h ◦ Fδ(i)),

then (η ∈ T pδ and) for every ν ∈ pos[tpδ
η ] ∩

⋂

i<δ pos[t
h◦Fδ(i)
η ] we have

(pδ)[ν] ≤ qδ,ν = (pδ)[root(qδ,ν )] and

(∀ρ ∈ T pδ)(ν E ρ ⊳ root(qδ,ν) ⇒ nor[tpδ
ρ ] = 0).

(Note that, in the situation as in (vi), Xδ =
⋂

i<δ pos[t
h◦Fδ(i)
η ].)

Plainly, the inductive construction of the pα’s and Yα’s is possible (for (v)

remember δ < µδ). Now letting root(r) = root(p), T r =
⋃

α<λ(T pα)α, trν =

t
plh(ν)+1
ν we get a condition r ∈ Qtree

D∗ (K,Σ) stronger than all pα’s.

Claim B.7.4.1: The condition r is (R, Ȳ)-fuzzy generic for q̄.

Proof of the Claim: It is very much like the proof of claim B.7.2.1. We note

that r is (N,Qtree
D∗ (K,Σ))-generic (by clause (iv)), and therefore it is enough to

show that Generic has a strategy in the game a
fuzzy
λ (r,N, Ī, h,Qtree

D∗ (K,Σ), F̄ , q̄)

which guarantees that the result 〈ri, Ci : i < λ〉 of the play satisfies A.3.4(5)(β)

(remember A.3.8(3)). Let us describe such a strategy. First, for α < λ let

ζα < λ be such that

(∀q ∈ Iζα
)( either pα ≤ q or pα, q are incompatible),

and let E′ = {δ ∈ E : (∀α < δ)(ζα < δ)} (it is a club of λ).

Now, suppose that during a play of a
fuzzy
λ (r,N, Ī, h,Qtree

D∗ (K,Σ), F̄ , q̄) the

players have arrived at stage i ∈ S having constructed a sequence 〈rj , Cj : j < i〉.

If either i is a successor ordinal or i /∈
⋂

j<i Cj , then Generic plays the <∗χ-first

condition ri ∈ Qtree
D∗ (K,Σ) such that (∀j < i)(rj ≤ ri) and lh(root(ri)) > i and

Ci = E′ \ lh(root(ri)).

If i ∈
⋂

j<i Cj ⊆ E′ is a limit ordinal, then Generic asks

(∗) is 〈h ◦ Fi(α) : α < i〉 an increasing Ī-exact sequence such that

(∀α < i)(∃j < i)(h ◦ Fi(α) ≤ rj)?
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If the answer to (∗) is “no”, then she plays like at the successor stage.

If the answer to (∗) is “yes”, then Generic takes η =
⋃

j<i root(rj) and she notes

that lh(η) = δ (by the choice of Cj ’s at successor stages) and η =
⋃

i<δ root(h ◦

Fδ(i)). Also, by the exactness and the choice of E′, we have

(∀j < i)(∃α < i)(pj ≤ h ◦ Fi(α)).

So now Generic looks at clause (vi) of the choice of pα’s. She picks (say, the

<∗χ-first) ν ∈
⋂

j<i pos[t
rj
η ] ⊆

⋂

j<i pos[t
h◦Fi(α)
η ] and notices that (by (vi)) ν E

root(qi,ν) ∈ T pi , qi,ν = (pi)
[root(qi,ν)] and (∀ρ ∈ T pi)(ν E ρ ⊳ root(qi,ν) ⇒

|pos[tpi
ρ ]| = 1). Therefore, root(qi,ν) ∈ T rj and qi,ν ≤ (T rj )[root(qi,ν)] (for each

j < i). So Generic can play Ci = E′ \ i and the <∗χ-first condition ri stronger

than all rj (for j < i) and qi,ν .

Easily, the strategy described above has the required property, and the proof

is completed.

This ends the proof of theorem B.7.4.

Problem B.7.5: Unlike the case of B.7.2, it is not clear how the proof of B.7.4

can be modified to get the parallel result for non-tree case. So, assuming that

A,W,H and D∗ are as in B.7.4 and (K,Σ) is an exactly λ̄-complete very local

λ-creating pair for H, is the forcing notion Q∗D∗(K,Σ) fuzzy proper for W?

B.8. More examples and applications. Here we are going to present

some direct applications of the methods developed in this paper. Though we do

keep our basic assumptions from 0.3, we are going to introduce more parameters,

so let us fully state the context we are working in now.

Context B.8.1:

(a) λ is a strongly inaccessible cardinal, 2λ = λ+, and 2λ+

= λ++, and

(b) µ̄ = 〈µα : α < λ〉, λ̄ = 〈λα : α < λ〉 and κ̄ = 〈κα : α < λ〉 are strictly

increasing sequences of uncountable regular cardinals, each cofinal in λ,

(c) for each α < λ,

• α < µα < µ+
α < λα < κα,

•
∏

β<α λβ < λα and (∀ξ < λα)(|ξ|α < λα),

(d) A = H<λ(λ∗), λ∗ > λ and W ⊆ [A]λ are as in A.3.1,

(e) D is a normal filter on λ such that there is a D-diamond.

Let us recall some notions related to cardinal characteristics of λ-reals.
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Definition B.8.2:

(1) Let Sµ̄ be the family of all sequences ā = 〈aα : α < λ〉 such that aα ∈

[λ]<µα (for all α < λ). We define

c(µ̄) = min{|Y| : Y ⊆ Sµ̄&(∀f ∈ λλ)(∃ā ∈ Y)(∀α < λ)(f(α) ∈ aα)},

c−cl(µ̄) = min{|Y| : Y ⊆ Sµ̄&

(∀f ∈ λλ)(∃ā ∈ Y)({α < λ : f(α) ∈ aα} ∈ (Dλ)+)},

and also

ecl(µ̄) = min{|G| :G ⊆
∏

α<λ

µα and

(∀f ∈
∏

α<λ

µα)(∃g ∈ G)({α < λ : f(α) 6= g(α)} ∈ Dλ)},

(2) For an ideal J of subsets of a set X , the covering number cov(J ) of J

is

cov(J ) = min{|Y| : Y ⊆ J& ∪ Y = X}.

Proposition B.8.3: It is consistent that c(λ̄) < ecl(µ̄).

Proof: Let H0(α) = µα (for α < λ) and let K0 consist of all λ-tree creatures

t ∈ TCRλ[H0] such that:

• dis[t] ∈ µlh(η[t]) + 1,

• if dis[t] = µlh(η[t]), then pos[t] = {η[t]⌢〈ξ〉 : ξ < µlh(η[t])} and nor[t] =

µlh(η[t]),

• if dis[t] < µlh(η[t]), then pos[t] = {η[t]⌢〈dis[t]〉} and nor[t] = 0.

Let Σ0 be a local tree-composition operation on K0 (so its domain consists of

singletons only) such that

• if dis[t] < µlh(η[t]), then Σ0(t) = {t},

• if dis[t] = µlh(η[t]), then Σ0(t) = {t′ ∈ K0 : η[t′] = η[t]}.

It should be clear that (K0,Σ0) is a very local exactly λ̄-complete tree creating

pair. The forcing notion Qtree
Dλ

(K0,Σ0) has the strong λ̄-Sacks property (by

B.6.5). Let W
˜

be the canonical Qtree
Dλ

(K0,Σ0)-name for the generic function in
∏

α<λ µα, so

p Qtree
Dλ

(K0,Σ0) “ root(p) ⊳ W
˜

”.

Then we have

Qtree
Dλ

(K0,Σ0) “(∀f ∈
∏

α<λ

µα ∩ V)({α < λ : W
˜

(α) = f(α)} ∈ (Dλ)+)”.
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Now let P be the limit of a λ-support iteration, λ++ in length, of the forcing

notions Qtree
Dλ

(K0,Σ0). Then, by A.2.4 + A.1.10 + A.1.5 + A.3.10,

• P is (<λ)-complete, λ-proper and satisfies the λ++-cc, and it has a dense

subset of size λ++, thus forcing with P does not collapse cardinals,

• P has the λ̄-Sacks property, it is weakly fuzzy proper for W ,

• P“2λ = 2λ+

= λ++ = ecl(µ̄) and c(λ̄) = λ+”

Remark B.8.4: The forcing Qtree
Dλ

(K0,Σ0) is a “bounded relative” of Dλ from

[16, 4.10] (remember B.6.7). It is also a generalization of the forcing notions

DX from [13].

Proposition B.8.5: It is consistent that c(λ̄) < c−cl(µ̄
+) = c(µ̄+), where µ̄+ =

〈µ+
α : α < λ〉.

Proof: Let H1(α) = µ+
α (for α < λ) and let K ′1 consist of all λ-tree creatures

t ∈ TCRλ[H1] such that:

• dis[t] ⊆ µ+
lh(η[t]), either |dis[t]| = 1 or dis[t] is a club of µ+

lh(η[t]),

• pos[t] = {η[t]⌢〈ξ〉 : ξ ∈ dis[t]},

• if |dis[t]| = 1 then nor[t] = 0, if |dis[t]| > 1 then nor[t] = µlh(η[t]).

Let Σ′1 be a local tree-composition operation on K ′1 such that

Σ′1(t) = {t′ ∈ K ′1 : η[t′] = η[t]&dis[t′] ⊆ dis[t]}.

Then (K ′1,Σ
′
1) is a very local µ̄-complete λ-tree creating pair. Let (K1,Σ1) be

the µ̄-exactivity of (K ′1,Σ
′
1) (see B.6.3); thus (K1,Σ1) is a very local exactly

µ̄-complete λ-tree creating pair. The forcing notion Qtree
Dλ

(K1,Σ1) is λ-complete

fuzzy proper for W and it has the strong λ̄-Sacks property. Also, letting W
˜

be the canonical name for the generic function in
∏

α<λ µ
+
α (i.e., p Qtree

Dλ
(K1,Σ1)

“ root(p) ⊳ W
˜

”), we have

Qtree
Dλ

(K1,Σ1) “(∀ā ∈ Sµ̄+ ∩ V)({α < λ : W
˜

(α) /∈ aα)} ∈ Dλ)”.

Let P be the limit of a λ-support iteration, λ++ in length, of the forcing notions

Qtree
Dλ

(K1,Σ1). Then (by A.2.4 + A.1.10 + A.1.5 + A.3.10) we have:

• P is (<λ)-complete, λ-proper and satisfies the λ++-cc, and it has a dense

subset of size λ++, thus forcing with P does not collapse cardinals,

• P has the λ̄-Sacks property, it is weakly fuzzy proper for W ,

• P“2λ = 2λ+

= λ++ = c−cl(µ̄
+) and c(λ̄) = λ+”
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Remark B.8.6: The result in B.8.5 is of interest as it shows that the λ-versions

of cardinal characteristics of the reals may behave totally differently from their

“ancestors”. Recall that if for an increasing function f ∈ ωω we let Sf consist

of all sequences ā = 〈an : n < ω〉 with an ∈ [ω]≤f(n)+1 (for n < ω), then

min{|Y| : Y ⊆ Sf &(∀h ∈ ωω)(∃ā ∈ Y)(∀n < ω)(h(n) ∈ an)}

= min{|Y| : Y ⊆ Sg&(∀h ∈ ωω)(∃ā ∈ Y)(∀n < ω)(h(n) ∈ an)}

for any increasing f, g ∈ ωω

The λ-tree creating pair (K1,Σ1) may be treated (in some sense) as a special

case of the λ-tree creating pairs (K(Ā),Σ(Ā)) from B.8.10 below.

Definition B.8.7: Let A be a family of subsets of κ such that κ ∈ A.

(1) A game a∗(A, µ) of two players, I and II, is defined as follows. A play lasts

µ moves, in the αth move a set Aα ∈ A is chosen, and player I chooses Aα

for even α’s. In the end player II wins if
⋂

α<µ Aα 6= ∅.

(2) The family A is a µ-category prebase on κ if player II has a winning

strategy in the game a∗(A, µ) and (∀A ∈ A)(∀ξ < κ)(∃B ∈ A)(B ⊆

A \ {ξ}).

(3) A set X ⊆ κ is A-presmall if

(∀A ∈ A)(∃B ∈ A)(B ⊆ A \X).

Of course, every µ+-complete uniform filter D∗ on κ is a µ-category base on

κ and then a set is D-presmall if and only if its complement is in D∗.

Definition B.8.8:

(1) A λ̄-smallness base on κ̄ is a sequence Ā = 〈Aα : α < λ〉 such that

each Aα is a λα-category prebase on κα.

Let Ā be a λ̄-smallness base on κ̄.

(2) Let T ⊆
⋃

α<λ

∏

β<λ κα be a complete λ-tree with max(T ) = ∅ and D∗

be a filter on λ. We say that

• T is Ā-small if for every η ∈ (T )α, α < λ, the set {ξ < κα : η⌢〈ξ〉 ∈

T } is Aα-presmall;

• T is (D∗, Ā)-small if

{α < λ : for every η ∈ (T )α the set

{ξ < κα : η⌢〈ξ〉 ∈ T } is Aα-presmall} ∈ D∗.

(3) Let Jκ̄(Ā) consist of all subsetsX of
∏

α<λ κα such thatX⊆
⋃

ε<λ limλ(Tε)

for some Ā-small trees Tε ⊆
⋃

α<λ

∏

β<λ κα (for ε < λ).
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Jκ̄(D∗, Ā) is defined similarly, replacing “Ā-small” by “(D∗, Ā)-small”.

Proposition B.8.9: Let Ā be a λ̄-smallness base on κ̄. Then both Jκ̄(Ā)

and Jκ̄(D∗, Ā) are proper λ+-complete ideals of subsets of
∏

α<λ κα, Jκ̄(Ā) ⊆

Jκ̄(D∗, Ā). They contain singletons and λ < cov(Jκ̄(D∗, Ā)) ≤ cov(Jκ̄(Ā)).

Proposition B.8.10: Let Ā be a λ̄-smallness base on κ̄ and D∗ be a normal

filter on λ. It is consistent that cov(Jκ̄(D∗, Ā)) > λ+.

Proof: First we define a λ-tree creating pair (K(Ā),Σ(Ā)) = (K,Σ). For

α < λ let H(α) = κα and let stα be a winning strategy of player II in the game

a∗(Aα, λα).

K consists of all λ-tree creatures t ∈ TCRλ[H] such that letting α = lh(η[t]):

• either dis[t] = (δ, 〈At
i : i < δ〉), where δ < λα and 〈At

i : i < δ〉 is (an

initial segment of) a play of a∗(Aα, λα) in which player II uses strategy

stα,

or dis[t] = 〈ξ〉 for some ξ < κα;

• if dis[t] = 〈ξ〉, then pos[t] = {η[t]⌢〈ξ〉} and nor[t] = 0;

• if dis[t] = (δ, 〈At
i : i < δ〉), then pos[t] = {η[t]⌢〈ξ〉 : ξ ∈

⋂

i<δ Ai} and

nor[t] = α+ 1. (If δ = 0 then we stipulate pos[t] = {η[t]⌢ξ : ξ < κα}.)

The domain of the tree composition operation Σ consists of singletons only,

and

if nor[t] = 0 then Σ(t) = {t},

if nor[t] > 0, α = lh(η[t]) and dis[t] = (δ, 〈At
i : i < δ〉), then Σ(t) consists of

those t′ ∈ K ∩ TCRλ
η[t][H] for which:

• either nor[t′] = 0 and pos[t′] ⊆ pos[t],

• or nor[t′] > 0, dis[t′] = (δ′, 〈At′

i : i < δ′〉) and 〈At
i : i < δ〉 E 〈At′

i : i < δ′〉.

Claim B.8.10.1: (K,Σ) is an exactly λ̄-complete very local tree creating pair

for H. Hence the forcing notion Qtree
D∗ (K,Σ) is fuzzy proper for W .

Proof of the Claim: The proof is straightforward.

We finish the proof of the proposition in a standard way: we force with λ-

support iteration, λ++ in length, of the forcing notion Qtree
D∗ (K(Ā),Σ(Ā)).
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